跳至主要内容

Leadless Cardiac Pacemaker: Does Anatomical Position at Implant Affect Long-Term Electrical Performance?

A pacemaker (or artificial pacemaker) is a medical device which uses electrical impulses, delivered by electrodes contracting the heart muscles, to regulate the beating of the heart. The permanent leadless cardiac pacemaker (LCP) has been shown to be safe and effective in human clinical trials. However, there is little information on the effect of implant location on LCP performance; the aim of this study was to determine whether anatomic position affected the long-term pacing performance of the LCP. 

In the study, patients who enrolled in the Leadless II IDE Clinical Trial and had finished 6 months follow-up (n = 479, mean age: 75.7 ± 11 years old) were selected for the study. The LCP that was implanted (NanostimTM, St. Jude Medical) is an entirely self-contained, active-fixation, rate-adaptive pacemaker that is 42-mm long with a maximum diameter of 6.00 mm. The LCP was delivered to the right ventricle through the use of a specially designed delivery system and was anchored in the right ventricle with the use of a helical screw-in fixation electrode at the distal end of the device. The implanting investigators determined the LCP final position under fluoroscope, which was categorized into three groups: RV apex (RVA, n = 174), RV apical septum (RVAS, n = 101), and RV septum (RVS, n = 204). Data on capture threshold (at a 0.4 ms pulse width), R-wave amplitude and impedance were analyzed at implant, hospital discharge and 2 weeks, 6 weeks, 3 months and 6 months post-implant.

The results indicated that at implant, the mean capture thresholds in the RVA, RVAS and RVS were 0.77 ± 0.45, 0.81 ± 0.61 and 0.78 ± 0.59 volts, respectively. R-wave amplitudes were 8.0 ± 3.0 mV, 7.7 ± 2.9 mV and 7.6 ± 2.9 mV, respectively. Impedance values were 727 ± 311, 765 ± 333, and 677 ± 227 respectively. There were no differences among the 3 implant locations in capture threshold or R-wave amplitudes at 6 months (P > 0.06); however, all 3 performance parameters significantly improved over time (P < 0.001).

In conclusion, the LCP implant location does not affect capture thresholds or R-wave amplitudes at 6 months, and there is little effect on impedance. Although implant location does not appear to be a predictor of electrical performance, additional long-term data will help guide optimal implant location, which would minimize the risk of perforation or dislodgement. And additional studies with a longer duration of follow-up are needed to fully evaluate the pacing performance of the LCP as these devices last for many years.

Article by John Ip, et al, from USA and Canada.

Full access: http://mrw.so/3J9KoU

Image by Servier Medical Art, from Flickr-cc.

评论

此博客中的热门博文

Electron Spin and Proton Spin in the Hydrogen and Hydrogen-Like Atomic Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52202#.VIj7tMnQrzE Author(s) Stanisław Olszewski * Affiliation(s) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland . ABSTRACT The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton ...

Remarks on the Complexity of Signed k-Domination on Graphs

Read  full  paper  at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53574#.VMnXsCzQrzE Author(s)    Chuan-Min Lee 1 , Cheng-Chien Lo 1 , Rui-Xin Ye 2 , Xun Xu 2 , Xiao-Han Shi 2 , Jia-Ying Li 2 Affiliation(s) 1 Department of Computer and Communication Engineering, Ming Chuan University, The First American University in Asia, Taoyuan, Taiwan, Chinese Taipei . 2 Department of Electronic Information Engineering, Fuzhou University, Fuzhou, China . ABSTRACT This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We also show that the problem is linear-time solvable for trees, interval graphs, and chord...

A Review of Technical Requirements for High Penetration of Wind Power Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52361#.VJN8VcCAM4 Author(s)    Yuan-Kang Wu 1 , Tung-Ching Lee 2 , Ting-Yen Hsieh 2 , Wei-Min Lin 2 Affiliation(s) 1 Department of Electrical Engineering, National Chung-Cheng University, Chiayi, Taiwan . 2 Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan . ABSTRACT Renewable portfolio targets have been established in many regions around the world. Regional targets such as 20% renewable energy by year 2020 are not uncommon. As the levels of wind power penetration increase, there are many power system impacts. This work investigated possible challenges and technic...