跳至主要内容

Investigation of Different Ionic Liquids in Improving Oil Recovery Factor

Given the depletion of oil reservoir energy and the limited discovery of new reservoirs, petroleum researchers have begun seeking more efficient techniques to improve the use rate of oil; one of the most promising methods is Chemical Enhanced Oil Recovery (CEOR), which has been used over the last three decades.

Enhanced Oil Recovery is the process of increasing the amount of oil that can be recovered from an oil reservoir, usually by injecting a substance into an existing oil well to increase pressure, reduce the viscosity of the oil and change reservoir wettability. In recent times, chemicals called Ionic Liquids (ILs) have been used to enhance the oil recovery factor.

Many studies have measured the properties of ionic liquids at different concentrations mixed either with water or other solvents. These investigations discovered that some ionic liquid types are capable of increasing mixture viscosity. The main objective of this experimental work was to investigate the efficiency of introducing various types of Ionic Liquids, 1-Ethyl-3-methylimidazolium Chloride [EMIM][Cl], 1-Benzyl-3-methylimidazolium Chloride [BenzMIM][Cl], and Trihexyltetradecylphosphonium Chloride [THTDPh][Cl] on the Recovery Factor (RF) of medium oil (Weyburn oil, 30.25 API°) at room temperature.

The series of flooding experiments were carried out by introducing a slug of IL mixtures. Further investigations have been conducted to examine the effect of ILs concentrations on the recovery mechanisms by measuring Surface Tension (SFT), pH, and viscosity of the displacing phases. Finally, the effect of these ILs in wettability alteration was examined.

The results showed that ILs proved to be efficient when used to enhance medium oil recovery. Regarding IL concentration, it was observed that the RF increased as the concentration of IL in the displacing phase increased. Moreover, the optimum concentration depended on the type of IL. Also, the findings indicated that [EMIM][Cl] was the most effective ionic liquid for enhancing medium oil recovery in comparison with the other three ILs.

Article by Ali Alarbah, et al, from University of Regina, Regina, Saskatchewan, Canada.

Full access: http://t.cn/E51GeCu
Image by FCAD Group, from Flickr-cc.

评论

此博客中的热门博文

Electron Spin and Proton Spin in the Hydrogen and Hydrogen-Like Atomic Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52202#.VIj7tMnQrzE Author(s) Stanisław Olszewski * Affiliation(s) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland . ABSTRACT The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton ...

Remarks on the Complexity of Signed k-Domination on Graphs

Read  full  paper  at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53574#.VMnXsCzQrzE Author(s)    Chuan-Min Lee 1 , Cheng-Chien Lo 1 , Rui-Xin Ye 2 , Xun Xu 2 , Xiao-Han Shi 2 , Jia-Ying Li 2 Affiliation(s) 1 Department of Computer and Communication Engineering, Ming Chuan University, The First American University in Asia, Taoyuan, Taiwan, Chinese Taipei . 2 Department of Electronic Information Engineering, Fuzhou University, Fuzhou, China . ABSTRACT This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We also show that the problem is linear-time solvable for trees, interval graphs, and chord...

A Review of Technical Requirements for High Penetration of Wind Power Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52361#.VJN8VcCAM4 Author(s)    Yuan-Kang Wu 1 , Tung-Ching Lee 2 , Ting-Yen Hsieh 2 , Wei-Min Lin 2 Affiliation(s) 1 Department of Electrical Engineering, National Chung-Cheng University, Chiayi, Taiwan . 2 Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan . ABSTRACT Renewable portfolio targets have been established in many regions around the world. Regional targets such as 20% renewable energy by year 2020 are not uncommon. As the levels of wind power penetration increase, there are many power system impacts. This work investigated possible challenges and technic...