跳至主要内容

Heterotrophic and Autotrophic Soil Respiration under Simulated Dormancy Conditions

Soil CO2 efflux is the primary carbon efflux from terrestrial ecosystems to the atmosphere. It is composed of autotrophic (plant) and heterotrophic (microbial) metabolic processes, and is usually quantified at the soil surface as a single source flux. Isotopic methods are a good tool for isolating heterotrophic and autotrophic respiration but are difficult to setup in situ and very costly. Thus, heterotrophic and autotrophic carbon efflux contributions to the gross soil carbon efflux are not well understood.

Accurate quantification of carbon fluxes is necessary to construct carbon budget models and accurately estimate ecosystem productivity. Soil CO2 effluxes, as most ecosystem processes, are sensitive to seasonal and environmental change. It is understood that soil CO2 effluxes are significantly lower during the winter of temperate ecosystems and assumed microorganisms dominate efflux origination.

In this paper, the authors hypothesized that heterotrophic contributions would be greater than autotrophic under simulated dormancy conditions. To test this hypothesis, they designed an experiment with the following treatments: combined autotrophic heterotrophic respiration, heterotrophic respiration, autotrophic respiration, no respiration, autotrophic respiration in vermiculite, and no respiration in vermiculite.

Engelmann spruce seedlings and soil substrates were placed in specially designed respiration chambers and soil CO2 efflux measurements were taken four times over the course of a month. Soil microbial densities and root volumes were measured for each chamber after day thirty-three.

Seedling presence resulted in significantly higher soil CO2 efflux rates for all soil substrates. Autotrophic respiration treatments were not representative of solely autotrophic soil CO2 efflux due to soil microbial contamination of autoclaved soil substrates; however, the mean autotrophic contributions averaged less than 25% of the total soil CO2 efflux. Soil microorganism communities were likely the primary contributor to soil CO2 efflux in simulated dormant conditions, as treatments with the greatest proportions of microbial densities had the highest soil CO2 efflux rates.

In conclusion, the findings suggest that fungal and bacterial soil communities are the major contributors to dormant season (simulated winter conditions) soil CO2 efflux.

Article by Daniel Beverly and Scott Franklin, from USA.

Full access: http://t.cn/E5FeVmg
Image by UBC Micrometeorology, from Flickr-cc.

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...