跳至主要内容

Modeling Bicycle Conflict on Non-Motorized Paths on Suburban College Campuses

Bicycling is becoming more and more used as a way of commuting in a person’s average day. It is also a popular way for college students and faculty to get around on their campus, but it varies by the type and size of the community.

With a rise in bicycling on campuses there comes a rise in bicycle collisions with vehicles, pedestrians, and other bicycles. There has been extensive research studying bicycle and pedestrian crashes. However, most of this research involves crashes with vehicles which are more common. While some aspects of this research can be applied to non-motorized paths, there is a lack of research strictly focusing on only bicycles and pedestrians.

This study aimed to fill this knowledge gap by developing a model to identify locations on roads and paths (hotspots) on college campuses that are likely to have a bicycle collision and predict the likelihood of a serious bicycle crash on a non-motorized path based on the characteristics of the path. This study identified those interactions between bicyclists and pedestrians on non-motorized paths on a suburban college campus in Newark, USA.

Findings suggest that pedestrian density of a path is a major factor in the maximum speed bicyclists can achieve. The wider the path is, the higher the maximum speed is that a bicyclist can obtain. This is because a wider path width decreases the pedestrian density. The grade of the path has little effect on bicycle speeds. The results of the models were displayed on a GIS map that is visually appealing to a viewer. The paths were color coded based on their level of safety, so it is easy to observe problematic areas of the network.

In short, this technique can be applied to the entire campus network of non-motorized paths to study the whole system. This can then be used by planners and designers to identify areas that need upgrading and improve the overall safety of the non-motorized path system.


Article by Zachary Nerwinski, et al, from University of Delaware, Newark, DE, USA.

Full access: http://mrw.so/59GMox

评论

此博客中的热门博文

Electron Spin and Proton Spin in the Hydrogen and Hydrogen-Like Atomic Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52202#.VIj7tMnQrzE Author(s) Stanisław Olszewski * Affiliation(s) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland . ABSTRACT The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton

Remarks on the Complexity of Signed k-Domination on Graphs

Read  full  paper  at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53574#.VMnXsCzQrzE Author(s)    Chuan-Min Lee 1 , Cheng-Chien Lo 1 , Rui-Xin Ye 2 , Xun Xu 2 , Xiao-Han Shi 2 , Jia-Ying Li 2 Affiliation(s) 1 Department of Computer and Communication Engineering, Ming Chuan University, The First American University in Asia, Taoyuan, Taiwan, Chinese Taipei . 2 Department of Electronic Information Engineering, Fuzhou University, Fuzhou, China . ABSTRACT This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We also show that the problem is linear-time solvable for trees, interval graphs, and chordal comparability graphs

Dietary Fiber Content of Waterleaf (Talinum triangulare (Jacq.) Willd) Cultivated with Organic and Conventional Fertilization in Different SeasonsDietary Fiber Content of Waterleaf (Talinum triangulare (Jacq.) Willd) Cultivated with Organic and Conventional Fertilization in Different Seasons

Read  full  paper  at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53985#.VN21HizQrzE Author(s)  Nuri Andarwulan 1,2 , Didah Nur Faridah 1,2 , Yolanda Sylvia Prabekti 1 , Harum Fadhilatunnur 1 , Leo Mualim 3 , Sandra Arifin Aziz 3 , Luis Cisneros-Zevallos 4   Affiliation(s) 1 Department of Food Science and Technology, Bogor Agricultural University, Bogor, Indonesia . 2 Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Bogor Agricultural University, Bogor, Indonesia . 3 Department of Agronomy and Horticulture, Bogor Agricultural University, Bogor, Indonesia . 4 Department of Horticultural Sciences, Texas A&M University, College Station, USA . ABSTRACT Waterleaf ( Talinum triangulare (Jacq.) Willd has long been eaten in Indonesia as vegetable and the main parts consumed are leaves and young shoots. Waterleaf is sticky presumably due to its pectin content which is associated to dietary fiber. The dietary fiber which