跳至主要内容

Argentinian Yungas Forest Fragmentation: Effects on Aboveground Biomass, Microclimate and Carbon Storage

The Argentinian Yungas ecosystem, the more extensive of the two richest biodiversity ecoregions of the country, is subject to rapid deforestation and fragmentation. Because these fragments are the future biodiversity reserves of this ecosystem, it’s interesting to know if they constitute small-scale replicas of the forest from which they were detached. The objective of this study was to characterize the fragments and compare them with sectors of continuous forest by studying the aboveground tree biomass (for the five most representative forest species), microclimate (three variables) and edaphic factors (three) as a function of distance from forest edge at 15, 25, 50, 100 and 200 meters.

The authors selected two size categories for fragments: 5 - 10 ha and 100 - 150 ha, located in the lower Yungas forest (LYF). They did sampling during the dry and wet seasons. As a result, in the larger fragments, the distance exerted a significant effect on the records of the microclimate and edaphic variables, gradually modifying them from the edge to the interior (up to at least 100 meters). The variations were more evident in the wet season. Solar radiation and relative humidity were two of the factors with greater response (Spearman r= -0.89; p < 0.001 and r = 0.58; p < 0.001, in the dry season, respectively). The microclimate of small fragments did not depend on the edge distance, but it was actually sunnier, drier and hotter than that of the forest. The soil had also lost organic carbon and humidity. These changes were accompanied by a lower AGB in the fragments with respect to the forest (6% and 60% of 162 ± 26.02 t·ha-1, for small and big fragments, respectively). The five species studied showed less density and trees of reduced dimensions (lower dbh and height). Fast-growing pioneer plant species and disturbance-loving lianas accompanied them. Edge plant composition presented notorious changes in the bigger fragments.

In conclusion, biomass and ecosystem processes such as carbon cycling, which had been modified into fragments, both were directly associated with the structure and functioning in LYF remnants. The human and animal intervention detected in the area could be interacting synergistically with the microclimate and biological changes observed and potentiate the effects of degradation in the fragments, creating conditions of greater threat to LYF’s biodiversity. However, the management of the LYF ecosystem within an adequate land use scheme could conserve and even encourage the recovery of the fragments ensuring a natural legacy of great importance for the country. Financing opportunities and globally assumed responsibilities in the context of climate change could constitute a favorable framework for the implementation of strategies to safeguard these forests.

Article by Silvina Manrique, et al, from Argentina.

Full access: http://mrw.so/2yNzWN
Image by Andres Claros, from Flickr-cc.


评论

此博客中的热门博文

Electron Spin and Proton Spin in the Hydrogen and Hydrogen-Like Atomic Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52202#.VIj7tMnQrzE Author(s) Stanisław Olszewski * Affiliation(s) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland . ABSTRACT The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton

Remarks on the Complexity of Signed k-Domination on Graphs

Read  full  paper  at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53574#.VMnXsCzQrzE Author(s)    Chuan-Min Lee 1 , Cheng-Chien Lo 1 , Rui-Xin Ye 2 , Xun Xu 2 , Xiao-Han Shi 2 , Jia-Ying Li 2 Affiliation(s) 1 Department of Computer and Communication Engineering, Ming Chuan University, The First American University in Asia, Taoyuan, Taiwan, Chinese Taipei . 2 Department of Electronic Information Engineering, Fuzhou University, Fuzhou, China . ABSTRACT This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We also show that the problem is linear-time solvable for trees, interval graphs, and chordal comparability graphs

Dietary Fiber Content of Waterleaf (Talinum triangulare (Jacq.) Willd) Cultivated with Organic and Conventional Fertilization in Different SeasonsDietary Fiber Content of Waterleaf (Talinum triangulare (Jacq.) Willd) Cultivated with Organic and Conventional Fertilization in Different Seasons

Read  full  paper  at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53985#.VN21HizQrzE Author(s)  Nuri Andarwulan 1,2 , Didah Nur Faridah 1,2 , Yolanda Sylvia Prabekti 1 , Harum Fadhilatunnur 1 , Leo Mualim 3 , Sandra Arifin Aziz 3 , Luis Cisneros-Zevallos 4   Affiliation(s) 1 Department of Food Science and Technology, Bogor Agricultural University, Bogor, Indonesia . 2 Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Bogor Agricultural University, Bogor, Indonesia . 3 Department of Agronomy and Horticulture, Bogor Agricultural University, Bogor, Indonesia . 4 Department of Horticultural Sciences, Texas A&M University, College Station, USA . ABSTRACT Waterleaf ( Talinum triangulare (Jacq.) Willd has long been eaten in Indonesia as vegetable and the main parts consumed are leaves and young shoots. Waterleaf is sticky presumably due to its pectin content which is associated to dietary fiber. The dietary fiber which