跳至主要内容

Argentinian Yungas Forest Fragmentation: Effects on Aboveground Biomass, Microclimate and Carbon Storage

The Argentinian Yungas ecosystem, the more extensive of the two richest biodiversity ecoregions of the country, is subject to rapid deforestation and fragmentation. Because these fragments are the future biodiversity reserves of this ecosystem, it’s interesting to know if they constitute small-scale replicas of the forest from which they were detached. The objective of this study was to characterize the fragments and compare them with sectors of continuous forest by studying the aboveground tree biomass (for the five most representative forest species), microclimate (three variables) and edaphic factors (three) as a function of distance from forest edge at 15, 25, 50, 100 and 200 meters.

The authors selected two size categories for fragments: 5 - 10 ha and 100 - 150 ha, located in the lower Yungas forest (LYF). They did sampling during the dry and wet seasons. As a result, in the larger fragments, the distance exerted a significant effect on the records of the microclimate and edaphic variables, gradually modifying them from the edge to the interior (up to at least 100 meters). The variations were more evident in the wet season. Solar radiation and relative humidity were two of the factors with greater response (Spearman r= -0.89; p < 0.001 and r = 0.58; p < 0.001, in the dry season, respectively). The microclimate of small fragments did not depend on the edge distance, but it was actually sunnier, drier and hotter than that of the forest. The soil had also lost organic carbon and humidity. These changes were accompanied by a lower AGB in the fragments with respect to the forest (6% and 60% of 162 ± 26.02 t·ha-1, for small and big fragments, respectively). The five species studied showed less density and trees of reduced dimensions (lower dbh and height). Fast-growing pioneer plant species and disturbance-loving lianas accompanied them. Edge plant composition presented notorious changes in the bigger fragments.

In conclusion, biomass and ecosystem processes such as carbon cycling, which had been modified into fragments, both were directly associated with the structure and functioning in LYF remnants. The human and animal intervention detected in the area could be interacting synergistically with the microclimate and biological changes observed and potentiate the effects of degradation in the fragments, creating conditions of greater threat to LYF’s biodiversity. However, the management of the LYF ecosystem within an adequate land use scheme could conserve and even encourage the recovery of the fragments ensuring a natural legacy of great importance for the country. Financing opportunities and globally assumed responsibilities in the context of climate change could constitute a favorable framework for the implementation of strategies to safeguard these forests.

Article by Silvina Manrique, et al, from Argentina.

Full access: http://mrw.so/2yNzWN
Image by Andres Claros, from Flickr-cc.


评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

Electron Spin and Proton Spin in the Hydrogen and Hydrogen-Like Atomic Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52202#.VIj7tMnQrzE Author(s) Stanisław Olszewski * Affiliation(s) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland . ABSTRACT The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton ...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...