跳至主要内容

Laterality of Accuracy of Grip and Elbow Flexion Force Exertions and Their Differences

Laterality refers to the preference most humans show for one side of their body over the other. It is particularly noticeable in functions of fingers, such as in using a spoon or writing letters, and is considered to occur from more preferential and frequent use of one hand in daily activities.

Some studies have shown that laterality in accuracy of force exertion differs even in the same upper limbs. This is why agonist muscles contributing to the achievement of each movement seem to differ. Agonist muscle is a muscle group in the fingers and antebrachium for handgrip and in biceps brachii for elbow flexion. Hence, laterality in accuracy of force exertion may differ between handgrip and elbow flexion in spite of movement in the same upper limb. So this study aimed to examine the accuracy of grip and elbow flexion force exertions for each demand value and the difference between movements.

Participants were 22 right-armed healthy young males (mean age 22.5 ± 5.6 years old, mean height 170.9 ± 5.8 cm, mean weight 62.4 ± 9.4 kg). Demand values of 25%, 50%, and 75% of maximum voluntary contraction (MVC) were selected. Using subjective judgment, participants were requested to exert each arm’s handgrip and elbow flexion forces for each demand value. Evaluation parameters were differences (errors) between demand and exertion values and their total error.

Results of two-way ANOVA (laterality and demand value) showed a significant interaction in grip movement. In results of multiple comparisons, an error in 25% MVC was greater than that in 50% MVC and 75% MVC in the non-dominant arm. For elbow flexion movement, a significant difference was found in a demand value factor, and results of multiple comparisons showed that error was greater in the order of 25% MVC, 50% MVC, and 75% MVC in the non-dominant arm; in the dominant arm, error was greater in 25% MVC than in 50% MVC and 75% MVC. Total error showed significant interaction and was greater in elbow flexion strength than in grip strength in the non-dominant arm.

In conclusion, the non-dominant arm had less error with greater demand values in grip and elbow flexion strengths, and laterality was not found in either movement at each demand value. Accuracy of force exertion in elbow flexion strength was inferior to grip strength.

Article by Hiroki Aoki and Shin-Ichi Demura, from Japan.

Full access: http://mrw.so/3Q8VhR

Image by bvstuber, from Flickr-cc.

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...