跳至主要内容

Soil Carbon Changes Influenced by Soil Management and Calculation Method

Throughout the years, many studies have evaluated changes in soil organic carbon (SOC) mass on a fixed-depth (FD) basis without considering changes in soil mass caused by changing bulk density (ρb). In this paper, the authors evaluated the temporal changes in SOC caused by two factors: 1) changing SOC concentration; and 2) changing equivalent soil mass (ESM) in comparison with FD. In addition, they also evaluated calculating changes in SOC stock over time using a minimum equivalent soil mass (ESMmin) basis from a single sampling event compared with the FD scenario.

A tillage [no-tillage (NT) and chisel plow (CP)]-crop rotation (multiple crop and continuous corn), and irrigation (full and delayed)) study was initiated in 2001 on Weld silt loam soil. After seven years, SOC concentration in the 0 - 30 cm depth was 19.7% greater in 2008 compared with 2001. Standardizing the soil mass of 2001 to the ESM of 2008 for each individual treatment showed an average gain in SOC of 5.8 Mg C·ha-1 in 2008 compared with 2001. However, the increase in SOC using ESM was twice the SOC gained with the FD calculation, where some treatments lost SOC after seven years of management. Estimating SOC levels using the ESMmin and thereby, eliminating the confounding effect of soil ρb indicated that SOC stock was influenced by crop species and their interaction with irrigation, but not by tillage practices.

In conclusion, the findings of the study indicate that the ESM was more effective in evaluating SOC stock due to the similarity to the temporal changes in SOC concentration compared with the FD scenario. The ESMmin method appeared to be an effective scenario for SOC evaluation from a single sampling event. Therefore, it’s advisable to sample several centimeters below the chosen depth of interest to allow for SOC evaluation with different scenarios.

Article by Maysoon M. Mikha, et al, from USA.

Full access: http://mrw.so/21qjlg

Image by FAO of the UN, from Flickr-cc.

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

Effects of Karate Training on Basic Motor Abilities of Primary School Children

“You never attack first in karate” might be the best conclusion of karate, which is a martial art practiced typically without weapons. It’s reported that karate has a long history for several hundred years, but the modern karate was spread to the whole Japan from Okinawa in the early part of 20th century. Now it has become one of the most widely practiced martial art forms in the world. Usually, it’s divided into Kihon, Kata and Kumite. As for the beginners, Kihon is more suitable for them because it involves basic techniques. Due to karate consists of dynamic offensive and defensive techniques using all parts of the body to their maximum advantage, the best understanding of true karate practice is the perfection of oneself through the perfection of the art. It not only develops coordination, quickens reflexes, and builds stamina, but also develops composure, a clearer thought process, deeper insight into one’s mental capabilities, and more self-confidence. So many researchers stu...

Electron Spin and Proton Spin in the Hydrogen and Hydrogen-Like Atomic Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52202#.VIj7tMnQrzE Author(s) Stanisław Olszewski * Affiliation(s) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland . ABSTRACT The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton ...