跳至主要内容

A Proposal of Potentially Meaningful Material for Teaching of Vector Mechanics

One of the difficulties presented in teaching mechanical vector is the visualization and interactivity issue. The use of static resources, such as lecture classes and the traditional media used, most often, does not allow a satisfactory teaching and learning of the content. An effective learning of the content is important for the engineers during the training, but the methodological alternatives that can provide the assimilation of the content in the easiest way, in most of the times are not available in the courses for teachers.

GeoGeabra software, which is a dynamic geometric environment that allows the interactive exploration of algebraic and geometric concepts, was used in the development and proposal of didactic solutions for disciplines in General Mechanical Engineering courses, developing activities in the form of computation tools, so-called potentially meaningful material. It was observed as necessary conditions in MLT―Meaningful Learning Theory, theoretical basis that contextualizes that new knowledge starts from the interaction with the previous cognitive structure of the individual knowledge.

Nowadays, computerization was not contested anymore, because the first contact with the computer technologies came from childhood; however, it was observed that lately technological insertions came from previous experiences at school.

This paper presents didactic solutions to the Vector Mechanics subject, which aims to teach the calculation and the representation of the acting forces on a given particle in space. It is about developed and applied activities in GeoGebra software, called potentially meaningful materials. The whole proposal was based on MLT―Meaningful Learning Theory, proposed by David Ausubel, in order to contribute to a more efficient learning in general disciplines of engineering courses.

Article by Bruno Nunes Myrrha Ribeiro,et al,from Brazil.


评论

此博客中的热门博文

Electron Spin and Proton Spin in the Hydrogen and Hydrogen-Like Atomic Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52202#.VIj7tMnQrzE Author(s) Stanisław Olszewski * Affiliation(s) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland . ABSTRACT The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton ...

Remarks on the Complexity of Signed k-Domination on Graphs

Read  full  paper  at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53574#.VMnXsCzQrzE Author(s)    Chuan-Min Lee 1 , Cheng-Chien Lo 1 , Rui-Xin Ye 2 , Xun Xu 2 , Xiao-Han Shi 2 , Jia-Ying Li 2 Affiliation(s) 1 Department of Computer and Communication Engineering, Ming Chuan University, The First American University in Asia, Taoyuan, Taiwan, Chinese Taipei . 2 Department of Electronic Information Engineering, Fuzhou University, Fuzhou, China . ABSTRACT This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We also show that the problem is linear-time solvable for trees, interval graphs, and chord...

A Review of Technical Requirements for High Penetration of Wind Power Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52361#.VJN8VcCAM4 Author(s)    Yuan-Kang Wu 1 , Tung-Ching Lee 2 , Ting-Yen Hsieh 2 , Wei-Min Lin 2 Affiliation(s) 1 Department of Electrical Engineering, National Chung-Cheng University, Chiayi, Taiwan . 2 Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan . ABSTRACT Renewable portfolio targets have been established in many regions around the world. Regional targets such as 20% renewable energy by year 2020 are not uncommon. As the levels of wind power penetration increase, there are many power system impacts. This work investigated possible challenges and technic...