跳至主要内容

The Significance of Carbon 14 in Graphite Reactor Components at End of Generation

Graphite is a crystalline form of the element carbon with its atoms arranged in a hexagonal structure. It is widely used in the nuclear industry and in research facilities due to its extreme purity and its ability to withstand extremely high temperatures and high irradiation doses (fast neutrons). The widely use of graphite has led to increasing amounts of irradiated graphite pending disposal.

It is estimated that there are at least 250,000 tonnes of irradiated graphite worldwide that will require eventual disposal. This graphite arises from a number of sources, but principally comprises moderator and structural materials for experimental reactors, production reactors, commercial power reactors and fuel assemblies.

The radionuclides in irradiated graphite presenting the most significant long-term hazard are Carbon 14 (C-14) and Chlorine 36 (Cl-36) with half-lives of 5730 and 301,000 years respectively. For a better understanding of the way in which C-14 is produced, its distribution within irradiated graphite and realistic quantification of activity can potentially lead to improved characterization to validate its status within current or future waste classifications, segregation to reduce Intermediate Level Waste volumes, or treatment to reduce activity enabling re-classification as Low Level Waste.

This paper reviewed all these issues and then focused on the significance of C-14. Some findings from a National Nuclear Laboratory study of C-14 levels in carbonaceous deposits and the underlying Magnox reactor graphite were presented to illustrate the need for thorough characterization of the waste material. These results were discussed in the context of aqueous leaching of C-14 from irradiated graphite and potential treatment options to minimize aqueous release.

The results of the review showed that while the general characteristics of irradiated graphite and the behavior of C-14 have been studied extensively, any assessment of graphite waste management options for material from a specific plant or facility will require an understanding of that material in relation to its manufacture, irradiation history and chemical environment during irradiation. The paper concluded with some broader observations on the significance of C-14 in nuclear reactor graphite components and how these issues should be considered when preparing the lifetime management of new nuclear plant.

Article by Martin Metcalfe and Athanasia Tzelepi, from UK.

Full access: http://t.cn/E5FZheV
Image by Chaminda Perera, from Flickr-cc.

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...