跳至主要内容

The Significance of Carbon 14 in Graphite Reactor Components at End of Generation

Graphite is a crystalline form of the element carbon with its atoms arranged in a hexagonal structure. It is widely used in the nuclear industry and in research facilities due to its extreme purity and its ability to withstand extremely high temperatures and high irradiation doses (fast neutrons). The widely use of graphite has led to increasing amounts of irradiated graphite pending disposal.

It is estimated that there are at least 250,000 tonnes of irradiated graphite worldwide that will require eventual disposal. This graphite arises from a number of sources, but principally comprises moderator and structural materials for experimental reactors, production reactors, commercial power reactors and fuel assemblies.

The radionuclides in irradiated graphite presenting the most significant long-term hazard are Carbon 14 (C-14) and Chlorine 36 (Cl-36) with half-lives of 5730 and 301,000 years respectively. For a better understanding of the way in which C-14 is produced, its distribution within irradiated graphite and realistic quantification of activity can potentially lead to improved characterization to validate its status within current or future waste classifications, segregation to reduce Intermediate Level Waste volumes, or treatment to reduce activity enabling re-classification as Low Level Waste.

This paper reviewed all these issues and then focused on the significance of C-14. Some findings from a National Nuclear Laboratory study of C-14 levels in carbonaceous deposits and the underlying Magnox reactor graphite were presented to illustrate the need for thorough characterization of the waste material. These results were discussed in the context of aqueous leaching of C-14 from irradiated graphite and potential treatment options to minimize aqueous release.

The results of the review showed that while the general characteristics of irradiated graphite and the behavior of C-14 have been studied extensively, any assessment of graphite waste management options for material from a specific plant or facility will require an understanding of that material in relation to its manufacture, irradiation history and chemical environment during irradiation. The paper concluded with some broader observations on the significance of C-14 in nuclear reactor graphite components and how these issues should be considered when preparing the lifetime management of new nuclear plant.

Article by Martin Metcalfe and Athanasia Tzelepi, from UK.

Full access: http://t.cn/E5FZheV
Image by Chaminda Perera, from Flickr-cc.

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...