跳至主要内容

The Application of a Representative Volume Element (RVE) Model for the Prediction of Rice Husk Particulate-Filled Polymer Composite Properties

Polymer composites are widely used materials with applications in multiple industries. However, its versatility that led to subsequent rise in polymer consumption has prompted an increase in research on alternative materials to address the associated environmental concerns.

The properties of a composite system are a complex function of a number of micromechanics parameters, based on the synergistic interaction between the composite’s microstructure. Therefore, the study of micromechanics made it possible to predict the material’s properties as a function of constituent properties and local conditions.

In this study, a numerical representative volume element (RVE) model was used to predict the mechanical properties of a Rice Husk Particulate (RHP)-Epoxy composite for use as an alternative material in non-critical applications. Seven different analytical models Counto, Ishai-Cohen, Halpin-Tsai, Nielsen, Nicolais, Modified Nicolais and Pukanszky were used as comparison tools for the numerical model. RHP-Epoxy biocomposite samples were fabricated with 0%, 10% and 30% RHP volume percentage and the experimental results benchmarked against the numerical and analytical projections. The mechanical properties estimated for 0%, 10% and 30% RHP-Epoxy composites using the numerical and analytical models were in general agreement.

Using the analytical models, it was calculated that an increase in volume percentage of RHP to 30% led to continual reduction in elastic Young’s modulus and ultimate tensile strength of the composite. The numerical RVE models also predicted a similar trend between filler volume percentage and material properties. These projections were consistent with the experimental results whereby a 10% increase in RHP content led to 15% and 20% decrease in yield stress and tensile strength, but had no effect on the composite’s elastic property. Further increase in RHP volume percentage to 30% resulted in 8%, 21% and 28% reduction in Young’s modulus, yield stress and tensile strength, respectively.

Overall, both analytical and numerical models predicted that the addition of rice husk particles can be used to replace some polymer content within the composite structure with minimal effect to the composite’s mechanical properties.

Article by Anil Saigal and Pandhita Pochanard, from Tufts University, Medford, MA, USA.

Full access: http://t.cn/EtpO5Pz

评论

此博客中的热门博文

Electron Spin and Proton Spin in the Hydrogen and Hydrogen-Like Atomic Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52202#.VIj7tMnQrzE Author(s) Stanisław Olszewski * Affiliation(s) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland . ABSTRACT The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton ...

Remarks on the Complexity of Signed k-Domination on Graphs

Read  full  paper  at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53574#.VMnXsCzQrzE Author(s)    Chuan-Min Lee 1 , Cheng-Chien Lo 1 , Rui-Xin Ye 2 , Xun Xu 2 , Xiao-Han Shi 2 , Jia-Ying Li 2 Affiliation(s) 1 Department of Computer and Communication Engineering, Ming Chuan University, The First American University in Asia, Taoyuan, Taiwan, Chinese Taipei . 2 Department of Electronic Information Engineering, Fuzhou University, Fuzhou, China . ABSTRACT This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We also show that the problem is linear-time solvable for trees, interval graphs, and chord...

A Review of Technical Requirements for High Penetration of Wind Power Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52361#.VJN8VcCAM4 Author(s)    Yuan-Kang Wu 1 , Tung-Ching Lee 2 , Ting-Yen Hsieh 2 , Wei-Min Lin 2 Affiliation(s) 1 Department of Electrical Engineering, National Chung-Cheng University, Chiayi, Taiwan . 2 Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan . ABSTRACT Renewable portfolio targets have been established in many regions around the world. Regional targets such as 20% renewable energy by year 2020 are not uncommon. As the levels of wind power penetration increase, there are many power system impacts. This work investigated possible challenges and technic...