跳至主要内容

Vibration Signal Analysis for Detecting Early-Stage Lumbar Spondylolysis Using Synthetic Bone

Lumbar spondylolysis is a fatigue fracture of the vertebral pars interarticularis caused by repeated extension and rotation of the lower trunk in young athletes. The prevalence of pars defects is reportedly high in adolescent athletes with back pain. Although lumbar spondylolysis is a major cause of low back pain in adolescence, it is usually asymptomatic in early stages.

Vibration signal analysis is a method used to measure changes in specific signal frequency components resulting from bone fracture, as the natural frequency of bone varies depending on bone shape. Unlike large-size imaging systems, such as MRI and CT, vibration signal analysis only requires simple equipment and can be performed anywhere. Thus, it can be performed outside medical institutions, where imaging examinations cannot be carried out. To detect early-stage spondylolysis using the vibration signal analysis is possible to prevent aggravation of spondylolysis as a new diagnostic tool instead of the imaging systems.

The aim of this study was to investigate whether vibration signal analysis can be used to detect lumbar spondylolysis in synthetic bone. Four synthetic spondylolysis models of the fifth lumbar vertebra (Sawbones, product No. SAW1352-10: Malmö, Sweden) were prepared, with the following conditions: intact, unilateral defect, and bilateral defect. Unilateral defects were created by making an incision of either half the diameter (50% incision) or the entire diameter (100% incision) in length through the pars interarticularis or pedicle. Bilateral defects were created by making an additional incision of half the diameter in length on the opposite side of the defected pars interarticularis or pedicle (50% + 100% incision).

Hammering was performed five times on each spinous process of the fixed synthetic bones and vibration signals were measured using an accelerometer attached to the contralateral side of the hammer. Signals were analyzed using fast Fourier transform. The parameters analyzed included the mean power frequency, first power minimum frequency (the minimum value between the first and second peaks), spectral areas of low and high frequency bands, and the relative ratio between the spectral areas of low and high frequency bands.
The results showed that the relative ratio was significantly lower in the 50%, 100%, and 50% + 100% incision conditions compared to the intact condition (p < 0.01), suggesting the potential utility of vibration signal analysis in diagnosing lumbar spondylolysis.

Article by Hiroyuki Watanabe, et al, from Japan.

Full access: http://t.cn/Eb6x5Iz

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Effects of Karate Training on Basic Motor Abilities of Primary School Children

“You never attack first in karate” might be the best conclusion of karate, which is a martial art practiced typically without weapons. It’s reported that karate has a long history for several hundred years, but the modern karate was spread to the whole Japan from Okinawa in the early part of 20th century. Now it has become one of the most widely practiced martial art forms in the world. Usually, it’s divided into Kihon, Kata and Kumite. As for the beginners, Kihon is more suitable for them because it involves basic techniques. Due to karate consists of dynamic offensive and defensive techniques using all parts of the body to their maximum advantage, the best understanding of true karate practice is the perfection of oneself through the perfection of the art. It not only develops coordination, quickens reflexes, and builds stamina, but also develops composure, a clearer thought process, deeper insight into one’s mental capabilities, and more self-confidence. So many researchers stu...