跳至主要内容

Performance and Optimization of a Small Hybrid Solar-Thermal Collector

Renewable energy is an important alternative to conventional burning of fossil fuels and natural gases. Solar energy is one example of a renewable energy source. There are two main methods for converting solar energy into more useful forms of energy like electricity or heat: 1) photo-voltaic cells, and 2) solar thermal systems. Photo-voltaic cells are widely used and have been heavily investigated. Solar thermal systems are less common and have not been investigated with the same detail as photo-voltaic systems.

Within the field of solar thermal systems, there are two primary constructions: 1) flat plate collectors (FPC), and 2) evacuated tube collectors (ETC), and each has its own strength. Flat plate collectors can collect both direct and diffuse radiation, and also operate better at low temperatures. In an effort to optimize the efficiency of both systems in a rainy climate, this project combined the two designs into one small hybrid prototype collector utilizing both ETC and FPC systems. While most solar collectors focus only on one solar collection method, the small hybrid system uses a flat plate collector in conjunction with five evacuated tubes to absorb the most energy possible from both direct and diffuse solar radiation.

Data was collected over four months while the system operated at different flow rates and with various levels of available insolation from the sun to evaluate the performance of the solar collector. To understand the relative contribution of the flat plate collector and the evacuated tubes, temperature differences across each part of the system were measured.

The results indicate the average first law efficiency of the hybrid system is 43.3%, significantly higher than the performance of the flat plate alone. An exergy analysis was performed for this system to assess the performance of the flat plate system by itself. Results of the second law analysis were comparable to the exergetic efficiencies of other experimental collectors, around 4%.

In conclusion, though the low efficiencies found in this analysis are not unusual among other flat plate collectors with water as the working fluid, they show that improvements should be made. Theoretically, flat plate second law efficiencies can reach 60%. This leaves a great deal of room for improvement for this system’s FPC. Recommended improvements focus on transferring the energy from the sun to the working fluid.  

Article by Amy Lebar and Heather E. Dillon, from University of Portland, Portland, USA.

Full access: http://t.cn/EbXxBwI

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...