跳至主要内容

Inhibition of Herpes Simplex Virus-1 by the Modified Green Tea Polyphenol EGCG-Stearate

Herpes Simplex Virus-1 (HSV-1) is a member of the family Herpesviridae, and subfamily Alphaherpesvirinae. Herpesviruses are double-stranded, and enveloped DNA viruses that cause a wide range of diseases in humans and other animals. HSV-1 undergoes both lytic and lysogenic infection cycles. HSV-1’s infection cycle begins with a rapid lytic infection of epithelial cells (typically oral) in vivo and in susceptible cultured cells in vitro. HSV-1 is also neurotropic and infection proceeds into nearby neurons via retrograde axonal transport, ultimately resulting in life-long latency in host sensory neurons. Since, the virus undergoes lysogenic infection, the immune system of an individual could never get rid of the virus completely. Therefore, recurrent viral infections are always a threat for HSV infected individuals.

Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, is the primary catechin obtained from leaves of the Camellia sinensis plant. EGCG has been previously demonstrated to have antiviral properties against several viruses including HIV, hepatitis B, hepatitis C, influenza, adenovirus, and Zika. EGCG has been shown to inhibit HSV-1 in Vero cells prior to virus adsorption. However, EGCG is chemically unstable and sensitive to biological transformation reactions. The structure of EGCG was modified by esterification to produce a lipophilized EGCG-acyl ester derivative containing stearic acid, also termed EGCG-Stearate (EGCG-S). Due to the enhanced solubility, EGCG-S is a more potent form that can be used in formulations to be applied in medicine.

The goal of this study is to assess the potential of EGCG-S to provide a novel therapeutic treatment to inhibit HSV-1 infections. In this study, 25 μM, 50 μM, 75 μM, and 100 μM of EGCG and EGCG-S were used to carry out cytotoxicity, cell viability and cell proliferation assays to determine the maximum non-cytotoxic concentrations on cultured A549 cells.

The results suggested that 75 μM of EGCG and EGCG-S is the appropriate concentration to further study the effect on the infection of HSV-1 in A549 cells. Infectivity, antiviral, and inverted microscopy assays were performed to study the effects of EGCG and EGCG-S on HSV-1 infection. An antiviral assay was performed using luminescence and it indicated that EGCG-S treated HSV-1 showed up to 90% inhibition. Confocal microscopy images further supported the inhibitory effects of 75 μM EGCG-S on HSV-1 infection in A549 cells.

In conclusion, EGCG-S, a more stable and lipid soluble derivative of EGCG, does not affect cellular morphology; is not cytotoxic; and can inhibit the infection of HSV-1 in cultured cells. EGCG-S shows promise for use as a topical therapeutic treatment to limit the spread of HSV-1 infections.  

Article by Shivani N. Patel, et al, from Montclair State University, Montclair, NJ, USA.

Full access: http://t.cn/EbXqJZt
Image by Roberto Maxwell, from Flickr-cc.

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...