跳至主要内容

Comparing Canopy Hyperspectral Reflectance Properties of Palmer amaranth to Okra and Super-Okra Leaf Cotton

Cotton (Gossypium spp.) is an important crop grown throughout the world. It is an important source of fiber and is one of the few crops with unique leaf shapes: 1) normal, 2) sub-okra, 3) okra, and 4) super-okra. Leaf shape plays a major role in cotton survival.

Palmer amaranth (Amaranthus palmeri S. Wats.) is a major weed affecting cotton production systems in the southern U.S. In ideal environmental conditions, it grows faster and outcompetes cotton plants for available resources, and it has been linked to a reduction in cotton yield.

Hyperspectral remote sensing has shown promise as a tool for crop weed discrimination, and there is a growing interest in using this technology for identifying weeds in cotton production systems. Currently, there is no research available comparing the canopy hyperspectral profiles of okra and super-okra leaf cotton to the canopy hyperspectral profile of Palmer amaranth. Also, no information is available on which regions of the spectrum are optimal for okra and super-okra leaf canopies separation from Palmer amaranth.

In this paper, two greenhouse studies were conducted to compare canopy hyperspectral reflectance profiles of Palmer amaranth to canopy hyperspectral reflectance profiles of okra and super-okra leaf cotton and to identify optimal regions of the electromagnetic spectrum for their discrimination. Ground-based hyperspectral measurements of the plant canopies were obtained with a spectroradiometer (400 - 2350 nm range). Analysis of variance (ANOVA, p ≤ 0.05), Dunnett’s test (p 0.05), and difference and sensitivity measurements were tabulated to determine the optimal wavebands for Palmer amaranth and cotton discrimination. 

Results were inconsistent for Palmer amaranth and okra leaf cotton separation. Optimal wavebands for distinguishing Palmer amaranth from super-okra leaf cotton were observed in the shortwave infrared region (2000 nm and 2180 nm) of the optical spectrum. Ground-based and airborne sensors can be tuned into the shortwave infrared bands identified in this study, facilitating application of remote sensing technology for Palmer amaranth discrimination from super-okra leaf cotton and implementation of the technology as a decision support tool in cotton weed management programs. The future research initiatives will focus on testing vegetation indices and derivative spectra as tools for discriminating Palmer amaranth and okra leaf cotton.

Article by Reginald S. Fletcher and Rickie B. Turley, from Agricultural Research Service, United States Department of Agriculture, Stoneville, USA.

Full access: http://t.cn/EbhNuVB
Image by Inthemind Ofnature, from Flickr-cc.

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...