跳至主要内容

Predicting Mortality and Functional Outcomes after Ischemic Stroke: External Validation of a Prognostic Model

Accurate prediction of outcomes after stroke is important, particularly if the predictive model can be applied to patient care and to relaying information to patients and families. Prediction of functional outcomes after ischemic stroke is challenging. There are a plethora of stroke-related clinical and imaging data to consider.

The authors previously derived predictive models for 3-month mortality and 3-month modified Rankin Score (mRS) score after acute ischemic stroke utilizing a cohort of patients from 1999. The purpose of the current study was to test the validity of those models. And two independent data sets from 2005 and 2010 that include comprehensive outcome measurements in a well-characterized cohort of ischemic strokes were used to assess external validity by utilizing measures of agreement between predicted and observed values, calibration, and discrimination using Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis.

The results showed that the 3-month mortality model performed well in the validation datasets with an average prediction error (Brier score) of 0.045 for 2005 and 0.053 for 2010 and excellent discrimination with an area under the curve of 0.86 (95% CI: 0.79, 0.93) for 2005 and 0.84 (0.76, 0.92) for 2010. Predicted 3-month mRS also performed well in the validation datasets with R2 of 0.57 for 2005 and 0.50 for 2010 and a root mean square error of 0.85 for 2005 and 1.05 for 2010. Predicted mRS tended to be higher than actual in both validation datasets. Re-estimation of the model parameters for age and severe white matter hyperintensity in both 2005 and 2010 and for diabetes in 2005 improved predictive accuracy. 

In conclusion, the models accurately predict 3-month mortality and functional outcome in two independent study cohorts with minor re-calibration. These models provide insight into post stroke recovery and may have utility in counseling patients and their families as well as for designing clinical trials and in epidemiological research.  


Article by Achala Vagal, et al, from USA.

Full access: http://mrw.so/4UEm7p

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...