跳至主要内容

Hot Water Treatment Enhances the Bioherbicidal Efficacy of a Fungus

Heat is a valuable entity that has served a variety of needs throughout human history, but only relatively recently has heat been used for weed control, where it may serve as an alternative to chemical herbicides. Much of the research involved with heat to control weeds has been via four general methods: controlled burning, flaming of weeds, hot water treatment and steam application.

Synthetic herbicides have been a tremendous asset to weed control in agriculture; however, weed control problems still exist, and many weeds have developed resistance to herbicides. An alternative to synthetic herbicides for weed control is the concept of bioherbicides. Bioherbicides are microbes and/or microbial phytotoxins used to control weeds. 

In this paper, the authors hypothesized that hot water treatment, followed by a bioherbicide application, might promote the efficacy a given pathogen for control of certain weeds. And the authors chose to examine the effects of hot water applications and CT (applied or formulated with corn oil emulsions and Silwet L-77) under greenhouse and field conditions for the control of hemp sesbania, an important weed in row crops in the southern U.S. In all greenhouse experiments, treatments were arranged in a randomized block design with four replicates (48 plants per replicate) and the experiments were repeated over time. In the field experiments, all treatments were replicated 4 times and the experiment was repeated in successive years.

The results indicated that hemp sesbania (Sesbania exaltata) plants (>30 cm tall) sprayed with hot water (45°C – 95°C), followed by spray applications of fungal spores of Colletotrichum truncatum (CT) at 1.0 × 107 spores/ml-1 and 22°C – 25°C, suspended either in: 0.2% Silwet L-77 surfactant (SW); unrefined corn oil (CO)/distilled water (1:1, v:v); or 0.2% SW in CO, were controlled by 80% - 95%, 12 days after treatment (DAT) under greenhouse conditions. These treatments also reduced dry weight accumulation of this weed. Plants treated with hot water without CT were also injured at temperatures ≥35°C (5% mortality), and 60% mortality at 95°C. Artificial dew treatments (25°C, 12 h), imposed on plants after the treatment protocols above, had little or no effect on weed mortality or dry weight reduction compared to treated plants without dew. Under field conditions, 85% control of hemp sesbania was achieved 12 - 15 DAT when a pre-treatment with hot water (65°C) was followed immediately with a CT application at the spore concentration as described above. Plants in field tests treated with CT without a hot water treatment were visually unaffected, with no mortality or plant biomass reductions recorded 15 DAT.

In conclusion, these results suggest that use of hot water may be an important tool for improving the infectivity and bioherbicidal potential of some plant pathogens. Future research will be needed to transform this concept into an economical and efficient technology for weed control.


Article by C. Douglas Boyette, et al, from USA.

Full access: http://suo.im/50TdpW

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...