跳至主要内容

Effect of Specific Mechanical Energy on In-Vitro Digestion and Physical Properties of Extruded Rice-Based Snacks

Extrusion cooking is a continuous process commonly used in industry to produce snacks, breakfast cereal and pet foods. It is considered as a high-temperature and short-time cooking process. Processing conditions in an extrusion process have significant effects on physiological properties of the products. Specific mechanical energy (SME) has been proposed to establish the relationship between processing variables and properties of expanded products such as density, expansion ratio, solubility and degree of gelatinization. As a system parameter, SME represents the amount of mechanical energy transferred to the feed material during extrusion, and it can be used to indicate extrusion conditions.

Rice has become an attractive ingredient in the extrusion industry in recent years because of its neutral taste and white color. It has been proposed that rice has a wide range of glycemic index (GI) depending on varieties and types. In this study, the effect of specific mechanical energy (SME) on in-vitro digestion and physical properties of extruded rice-based snacks was investigated.

Whole grains of medium grain brown rice (BR), medium grain sushi rice (SR) and long grain jasmine rice (JR) were extruded to prepare the rice-based snacks using a single screw extruder without additional thermal energy input. SME during extrusion was varied by changing feed moisture content. The feed moisture content (wet basis) was 9.99% - 12.55% for BR, 11.37% - 13.92% for SR and 12.42% - 14.39% for JR, respectively. Six extruded samples of each type of rice with different SME were collected and analyzed.

With the decreasing SME, all three types of rice-based snacks showed significant decreases (p < 0.05) on rapidly digestible starch (RDS) and significant increases (p < 0.05) on slowly digestible starch (SDS). Physical properties, including expansion ratio (ER), bulk density (BD) and fracture energy (FE) were found to be highly correlated to SME.

In conclusion, the results indicated that SME has significant effects on in-vitro digestibility and potentially glycemic index of extruded rice snacks. And in an extrusion process without additional thermal energy input, SME as a system parameter could work as a good indicator of many properties of extrudates such as physical and digestive properties.


Article by Yiming Feng and Youngsoo Lee, from University of Illinois Urbana-Champaign, Urbana, USA.

Full access: http://suo.im/4EnoSZ

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...