跳至主要内容

Comparison of Wheat Yield Simulated Using Three N Cycling Options in the SWAT Model

The Soil and Water Assessment Tool, or SWAT model, is a small watershed to river basin-scale model to simulate the quality and quantity of surface and ground water and predict the environmental impact of land use, land management practices, and climate change. SWAT is widely used in assessing soil erosion prevention and control, non-point source pollution control and regional management in watersheds. It has been successfully used to predict alterations in streamflow, evapotranspiration and soil water; however, it is not clear how effective or accurate SWAT is at predicting crop growth.

Previous research suggests that while the hydrologic balance in each watershed is accurately simulated with SWAT, the SWAT model over or under predicts crop yield relative to fertilizer inputs. The SWAT model now has three alternative N simulation options: 1) SWAT model with an added flush of N (SWAT-flush); 2) N routines derived from the CENTURY model (SWAT-C); and 3) a one-pool C and N model (SWAT-One). The objective of this study was to evaluate the performance of SWAT-flush, SWAT-C, and SWAT-One as they affect wheat yield prediction.

Simulated yields were compared to wheat yields in a 28-year fertilizer/wheat yield study in Lahoma, OK. Simulated yields were correlated with actual 28-year mean yield; however, none of the available N cycling models predicted yearly yields. SWAT-C simulated average yields were closer than other N sub-models to average actual yield. Annually there was a stronger correlation between SWAT-flush and actual yields than the other submodels. However, none of the N-cycling routines were able to accurately predict annual variability in yield at any fertilizer rate.

In conclusion, this research indicates that SWAT-C or SWAT-flush provides the most accurate prediction of average wheat yield and can be used for wheat cropland yield assessment. Further research is needed to determine the effectiveness of SWAT-C and SWAT-flush in determining average and annual yield in various farming regions and with numerous agronomic crops.


Article by Elizabeth Brooke Haney, et al, from USA.

Full access: http://suo.im/4pc5Pt

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...