跳至主要内容

Potential Use of Multipurpose Paulownia elongate Tree as an Animal Feed Resource

Paulownia elongata (family Paulowniaceae) is economically important as a short-rotation tree bioenergy crop. As a fast-growing tree, Paulownia has also been suggested as a bioenergy crop, potentially useful for both carbon sequestration or as a biomass source for conversion to transportation fuel. In addition to its usefulness as wood and related industrial products, the fruits, wood, bark, roots, seeds, leaves, and flowers of Paulownia have also been reported to have a number of useful medicinal properties. The fallen leaves of Paulownia improve soil quality by increasing organic matter and the nectariferous flowers are rich source of nutritious honey. However, the potential use of Paulownia foliage as livestock fodder has thus far received less attention. 

In this study, nutritional properties of Paulownia elongata leaves collected at monthly intervals from Paulownia Demonstration Plot, Fort Valley State University (FVSU), Fort Valley, Georgia, USA, from April to November, 2011, were studied. The leaves were dried and analyzed for crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), fat, gross energy, and ash content.

Paulownia trees showed a steady increase in diameter at breast height (DBH) with respect to overall tree height over a three-year period in the timber plot. Analysis of data obtained for P. elongata showed active growth leading to increase in height as well as girth. The CP, NDF, ADF, ADL, fat and ash content ranged from 14% - 23%, 29% - 55%, 18% - 42%, 10% - 22%, 2% - 4%, and 6% - 9%, respectively, indicating that Paulownia leaves have potential as a feed resource for livestock. Forage potential research was followed up by developing protocols to manufacture feed pellets with 75% and 95% leaf component and assessing their physical properties.

In conclusion, the results suggest that Paulownia leaves and other parts are rich in medicinal components and antioxidant activity that may impart additional health benefits to the animal.  More work (feeding/browsing trials) with this multipurpose tree is warranted to determine its palatability and nutritional potential for grazing/browsing livestock.


Article by Whitley Marshay Stewart, et al, from Fort Valley State University, Fort Valley, GA, USA.

Full access: http://mrw.so/4GDkes

Image by Paco Garin, from Flickr-cc.

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...