跳至主要内容

Cognitive Control and Brain Network Dynamics during Word Generation Tasks Predicted Using a Novel Event-Related Deep Brain Activity Method

Cognitive control is essential for performing daily activities. It allows the brain to vary adaptive behavior according to current goals and tasks, rather than remaining rigid and inflexible. Functional magnetic resonance imaging (fMRI) studies reveal that neurophysiological mechanisms underlying cognitive disorders involve disrupted large-scale brain networks. To elicit mechanisms of cognitive dysfunction, there has been a significant interest in understanding networks that manage cognitive function.

Recent imaging studies have explored neural mechanisms underlying cognitive dysfunction based on brain network architecture and functioning. The dorsal anterior cingulate cortex (dACC) is thought to regulate large-scale intrinsic brain networks, and plays a primary role in cognitive processing with the anterior insular cortex (aIC), thus providing salience functions. Although neural mechanisms have been elucidated at the connectivity level by imaging studies, their understanding at the activity level still remains unclear because of limited time-based resolution of conventional imaging techniques.

In this study, the authors investigated temporal activity of the dACC during word (verb) generation tasks based on our newly developed event-related deep brain activity (ER-DBA) method using occipital electroencephalogram (EEG) alpha-2 powers with a time resolution of a few hundred milliseconds. The dACC exhibited dip-like temporal waveforms indicating deactivation in an initial stage of each trial when appropriate verbs were successfully generated. By contrast, monotonous increase was observed for incorrect responses and a decrease was detected for no responses. The dip depth was correlated with the percentage of success. Additionally, the dip depth linearly increased with increasing slow component of the DBA index at rest across all subjects.

These findings suggest that dACC deactivation is essential for cognitive processing, whereas its activation is required for goal-oriented behavioral outputs, such as cued speech. Such dACC functioning, represented by the dip depth, is supported by the activity of the upper brainstem region including monoaminergic neural systems.

Future studies will be conducted to understand neural mechanisms underlying performance-based difference reflected in ER-DBA traces during cognitive tasks and those involved in cognitive impairment observed in various diseases.


Article by Emiko Imai and Yoshitada Katagiri, from Japan.

Full access: http://mrw.so/xCs69

Image by Ceneje Jeftinije, from Flickr-cc.

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...