跳至主要内容

Planting Geometry Effects on the Growth and Yield of Dryland Cotton

The declining Ogallala Aquifer beneath the Southern High Plains may necessitate dryland crop production and cotton (Gossypium hirsutum L.) is a well-adapted and potentially profitable alternative crop. The limited growing season duration of the Texas Panhandle and southwestern Kansas, however, imposes significant production risk due to incomplete boll maturation. Emphasizing earlier boll production that is usually confined to sites on lower fruiting branches may reduce risk, but offsetting high planting densities are needed to maintain desirable lint yield. In this study, the authors aimed to quantify planting: 1) row width and 2) in-row spacing effects on growth, yield, and fiber quality of dryland cotton.

The authors carried out a field experiment and a crop growth simulation. The field tests of row widths from 0.25 to 0.76 m and plant densities with in-row spacing ranging from 0.075 to 0.15 m were conducted from 1999 to 2005 on a nearly level Pullman clay loam (fine, mixed, superactive, thermic Torrertic Paleustoll) managed in a wheat (Triticum aestivum L.), cotton, fallow (W-Ctn-F) rotation. And to expand the basis of comparison, cotton growth and yields were simulated using GOSSYM and long-term (1958-2000) weather records from Bushland, TX, as input for all combinations of 0.38 or 0.76 m row widths and plant spacing of 0.075, 0.10 and 0.15 m.

Experimental and computer simulated plant height and harvested boll number increased significantly with increased row spacing and, occasionally, in-row plant spacing. Modeled lint yield for 0.38 m rows decreased by approximately 50% compared with the 582 kg·ha-1 yield for conventional row spacing, which was practically duplicated by field observations in 2001 and 2004. Measured fiber quality occasionally improved with conventional row spacing over ultra-narrow rows, but was unaffected by plant spacing.

In conclusion, using narrow rows or frequent plant spacing did not improve net lint yield or fiber quality of dryland cotton. Then, concentrating on early set cotton boll production by adapting planting geometry to increase plant population and consequently cotton yield is not recommended under dryland conditions to overcome a thermally limited growing season.

Article by R. L. Baumhardt, et al, from USA.

Full access: http://mrw.so/4krGKW  
Image by andrewkt263, from Flickr-cc.

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...