跳至主要内容

End-to-End Encryption in Messaging Services and National Security—Case of WhatsApp Messenger

Since Smartphones became popular, many messaging services have been launched. WhatsApp, which is a free messaging service owned by Facebook Inc., has emerged as one of the most popular messaging apps on mobile devices today. And as more and more people use WhatsApp as a means of communication, the importance of securing its users’ business or private communications has become more imperative. Users of the app expect a reasonable amount of privacy for all their communications. To meet this expectation, WhatsApp in 2014 introduced End-to-End Encryption (E2EE) technology. This allows for data between communicating parties to be secure, free from eavesdropping, and hard to crack. This technology offers peace of mind to end users because their data are safe in transit, and third parties or even WhatsApp itself cannot access them; thus messages can only be decrypted by the recipient.

However, the ubiquity of instant messaging services on mobile devices and their use of end-to-end encryption in safeguarding the privacy of their users have become a concern for some governments. Governments would like a “backdoor” into such apps, to use in accessing messages and have emphasized that they will only use the “backdoor” if there is a credible threat to national security. Users of WhatsApp have, however, argued against a “backdoor”; they claim a “backdoor” would not only be an infringement of their privacy, but that hackers could also take advantage of it.

In light of this security and privacy conflict between the end users of WhatsApp and government’s need to access messages in order to thwart potential terror attacks, this paper presented the advantages of maintaining E2EE in WhatsApp and why governments should not be allowed a “backdoor” to access users’ messages. This research also presented the benefits encryption had on consumer security and privacy, and also on the challenges it posed to public safety and national security.

Article by Robert E. Endeley, from Capitol Technology University, Laurel, MD, USA.

Full access: http://mrw.so/2m6oro
Image by App Italia, from Flickr-cc.

评论

此博客中的热门博文

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...