跳至主要内容

Characterization and Deer-Repellent Property of Chrysophanol and Emodin from Sicklepod Weed

In North America, among the wildlife species, deer, particularly white-tailed deer (Odocoileus virginianus), damage row crops such as soybean (Glycine max L.) and are a perceived problem. Currently, the widely used technique to control deer from crop browsing is establishment of fences and application of repellents. In general, fencing is expensive, labor intensive, and most of the time ineffective and effectiveness of repellents depends on numerous factors, such as rainfall, which may dissolve repellents thus requiring reapplication.

Sicklepod (Senna obtusifolia L.) is among the ten most troublesome weeds in the southern US. Studies have shown that sicklepod, Senna obtusifolia (L.), contains anthraquinone derivatives, which in separate studies were shown to be toxic to cattle, rats, rabbits, and horses, and repel herbivores primarily birds. However, information of the deer-repelling property of anthraquinone in sicklepod is lacking.

In this study, the authors aimed to explore the deer-repelling potential of sicklepod extracts and characterize the deer-repelling compounds present in sicklepod plant parts. Field tests conducted at the Captive Deer Facility at Mississippi State University (MSU) confirmed the deer-repelling property of anthraquinone extracts from sicklepod. Soybean plants applied with control treatment (water) were browsed by deer, while plants applied with sicklepod anthraquinone extracts were avoided. Using chromatography techniques, the authors found the levels of anthraquinone derivatives (chrysophanol, emodin) in sicklepod plant parts in the order: root > fruit > stem/leaf. Hydrolysis of water extracts of sicklepod seed produced high emodin concentration, suggesting emodin glycoside as the main form of anthraquinone glycoside in sicklepod seed.

In conclusion, deer-repelling compounds can be extracted in its pure form from sicklepod and applied on soybean to increase its repelling efficacy on deer, and at the same time protect soybean yields. Also, the current work forms a basis to further apply the sicklepod deer-repelling property (anthraquinone derivatives as effective components) to protect soybean plants from injury and consequent yield reduction arising from deer grazing.

Article by Ziming Yue, et al, from Mississippi State University, Starkville, MS, USA.

Full access: http://mrw.so/2oyF5R
Image by James Wilson, from Flickr-cc.

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...