跳至主要内容

Water Use of Juvenile Live Oak (Quercus virginiana) Trees over Five Years in a Humid Climate

Trees planted in urban landscapes often require irrigation during all stages of life. Landscape tree water management requires reasonable estimates of water demand in order to schedule irrigation amounts and timing to conserve water while maintaining tree health. Estimating tree water demand is not straightforward for water demand of isolated trees as typically found in urban landscapes is affected by numerous factors.

To meet minimum spring flows, water management districts in Florida sought to make both agriculture and urban landscapes water efficient, which includes tree farms. Quercus virginiana, commonly known as live oak trees, is endemic to Central Florida and among the most popular landscape trees for their gracefulness and spreading shade.

In this study, to provide a basis for irrigation allocations both during production and in landscapes, daily actual evapotranspiration (ETA) in liters for three live oak trees was measured with weighing lysimeters over five years, beginning with seedlings and continuing until trees averaged 7.2 meters in height. Empirical models were derived to calculate ETA based on crown horizontal projected area (PCA) or trunk caliper (TCSA), adjusted daily by changes in evapotranspiration (ETO). Average ETA to produce these live oaks was 62,218 L cumulative over 5.5 years. Effectively transpiring leaf, tree water use volume divided by ETO, was closely related to PCA over five years with the slope of this relationship being equivalent to a Plant Factor of 0.93. The product of ETO and this Plant Factor can be used to estimate depth of live oak water demand in urban landscapes. Also, this Plant Factor can estimate water demand volume in nurseries and landscapes when combined with PCA, and similarly the slopes for TCSA can be used to estimate ETA water volume from measured trunk diameter.

In conclusion, daily ETA of Quercus virginiana can be estimated with high precision based on the methods of calculating ETO and using the appropriate coefficients (for PCA or TCSA) for a given measure of tree capacity to move and transpire water. 

Article by Richard C. Beeson, et al, from University of Florida, Apopka, FL, USA.

Full access: http://mrw.so/3qjsKJ

Image by Ruy Urraca, from Flickr-cc.

评论

此博客中的热门博文

Electron Spin and Proton Spin in the Hydrogen and Hydrogen-Like Atomic Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52202#.VIj7tMnQrzE Author(s) Stanisław Olszewski * Affiliation(s) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland . ABSTRACT The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton ...

Remarks on the Complexity of Signed k-Domination on Graphs

Read  full  paper  at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53574#.VMnXsCzQrzE Author(s)    Chuan-Min Lee 1 , Cheng-Chien Lo 1 , Rui-Xin Ye 2 , Xun Xu 2 , Xiao-Han Shi 2 , Jia-Ying Li 2 Affiliation(s) 1 Department of Computer and Communication Engineering, Ming Chuan University, The First American University in Asia, Taoyuan, Taiwan, Chinese Taipei . 2 Department of Electronic Information Engineering, Fuzhou University, Fuzhou, China . ABSTRACT This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We also show that the problem is linear-time solvable for trees, interval graphs, and chord...

A Review of Technical Requirements for High Penetration of Wind Power Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52361#.VJN8VcCAM4 Author(s)    Yuan-Kang Wu 1 , Tung-Ching Lee 2 , Ting-Yen Hsieh 2 , Wei-Min Lin 2 Affiliation(s) 1 Department of Electrical Engineering, National Chung-Cheng University, Chiayi, Taiwan . 2 Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan . ABSTRACT Renewable portfolio targets have been established in many regions around the world. Regional targets such as 20% renewable energy by year 2020 are not uncommon. As the levels of wind power penetration increase, there are many power system impacts. This work investigated possible challenges and technic...