跳至主要内容

Soil Compaction and Arbuscular mycorrhizae Affect Seedling Growth of Three Grasse s

Soil compaction is a major limiting factor in restoring native vegetation on reclaimed surface mined land in the Appalachian coal mining region of the eastern USA. It limits available water and nutrients, reduces pore volume, restricts root elongation and development, reduces plant growth, and leads to anaerobic conditions that many plants are unable to tolerate.

Previously, non-native forage species such as tall fescue (Schedonorus arundinaceus (Schreb.) Dumort., nom. cons.) have been planted because they easily established on reclaimed mine soil. And some studies have shown that establishing large-statured, robust prairie species as an alternative to low-diversity forage complexes might improve soil conditions on reclaimed mine land over time.

In this study, the authors conducted a 10-week glasshouse study comparing growth of “Pete” eastern gamagrass (Tripsacum dactyloides L.), “Bison” big bluestem (Andropogon gerardii Vitman), and “Jesup MaxQ” tall fescue at soil bulk densities (BD) of 1.0, 1.3, and 1.5 g·cm-3. They also examined effects of arbuscular-mycorrhizal fungi (AMF) on plant growth in relation to compaction. Sources of AMF were a reclaimed surface coal mine soil and a native tall grass prairie soil.

The results indicated that shoot and root biomass of tall fescue and big bluestem were reduced at 1.5 BD while eastern gamagrass growth was not affected. Growth of big bluestem and eastern gamagrass was greater with AMF than without, but similar between AMF sources. Tall fescue growth was not enhanced by AMF. Overall, tall fescue biomass was 3 times greater than eastern gamagrass and 6 times greater than big bluestem when comparing only AMF-colonized grasses. Eastern gamagrass and big bluestem were both slower to establish than tall fescue. Eastern gamagrass appeared to be more tolerant of compaction, while big bluestem appeared somewhat less tolerant.

In conclusion, the AMF associated with cool-season forage grasses on reclaimed mine soil in this study is suitable for establishment of warm-season AMF dependent prairie grasses like big bluestem and eastern gamagrass. And successful establishment of warm-season prairie grasses on compacted reclaimed mine soil will require effective AMF and considerably more time than cool season grasses such as tall fescue, but could useful in increasing biological diversity.

Article by Mark Thorne, et al, from The Ohio State University, Columbus, USA.

Full access: http://mrw.so/4py3FG

Image by Bill Harms, from Flickr-cc.

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...