跳至主要内容

Plant Senescence: The Role of Volatile Terpene Compounds (VTCs)

Plant senescence is deemed as a complex, highly regulated, developmental phase in the life of a plant with a consequence of a coordinated degradation of macromolecules and a subsequent benefit of component mobilization from other parts of the plant. In some cases, under one or many environmental stresses, senescence is triggered in plants. Despite many studies in the area, less consideration has been given to plant secondary metabolites, especially the role of volatile terpene compounds (VTCs) on plant senescence. Actually, Not only does VTCs serve as a feeding deterrent to insects and some herbivores, it is now well accepted that VTCs play a major role in plant senescence by keeping the plant healthy and also protecting it against environmental stresses that are known to cause plant death.

This review sought to capture the biosynthesis and signal transduction of VTCs, the physiology of VTCs in plant development and how that was linked to some phytohormones to induce senescence. And much progress had been made in the elucidation of metabolic pathways leading to the biosynthesis of VTCs. In addition to the classical cytosolic mevalonic acid (MVA) pathway from acetyl-CoA, the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, originating from glyceraldehyde-3-phosphate (GAP) and pyruvate, led to the biosynthesis of isoprenoid precursors, isopentenyl diphosphate and dimethyl allyl diphosphate. VTCs synthesis and emission were believed to be tightly regulated by photosynthetic carbon supply into MEP pathway. Thus, under abiotic stresses such as drought, high salinity, high and low temperature, and low CO2 that directly affected stomatal conductance and ultimately biochemical limitation to photosynthesis, there had been observed induction of VTC synthesis and emissions, reflecting the elicitation of MEP pathway. This revealed the possibility of important function(s) of VTCs in plant defense against stress by mobilizing resources from components of plants and therefore, senescence.

In short, the current understanding of the relationship between environmental responses and senescence mostly comes from the study of senescence response to phytohormones such as abscisic acid, jasmonic acid, ethylene and salicylic acid, which are extensively involved in response to various abiotic and biotic stresses. These stresses affect synthesis and/or signaling pathways of phytohormones to eventually trigger expression of stress-responsive genes, which in turn appears to affect leaf senescence. Future molecular studies to profile expressed genes in plants during senescence and abscission will help indicate the induced transcripts that encode for VTCs and phytohormones.

Article by Ernest Asante Korankye, et al, from Dalhousie University, Halifax, Canada.

Full access: http://mrw.so/3n9uXa
Image by Katie Howell, from Flickr-cc.

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...