跳至主要内容

Evaluation of Cowpea Genotypes for Resistance to Fusarium redolens in Uganda

Cowpea is the most important legume in the Eastern and Northern region of Uganda where both its leaves and grains are used as food. Its cultivation in Uganda is constrained by many factors. In this paper, the authors aimed at screening cowpea genotypes against Fusarium redolens, a root rot causing pathogen that was found to be the most devastative to cowpea in greenhouse condition.

In the study, ninety cowpea genotypes were evaluated two times against a highly virulent Fusarium redolens (isolate from Zombo in Paidha district) in the screen house in 2016. Genotype effect was highly significant (P < 0.001) for root rot severity. Based on the Index of Susceptibility (IS), three genotypes (Asontem, Dan1 LA and IT89KD-88) remained resistant (IS < 3.5) over the two screening periods, 72 moderately resistant (3.5 ≤ IS < 6.5) and 11 susceptible (IS ≥ 6.5). Resistance was found to be enhanced by presence of lateral roots above or at the ground level. Further results suggested a difference in genetic control of resistance to root rots and seed rots caused by Fusarium redolens. All the released varieties tested (SECOW 1T, SECOW 2 W, SECOW 3 B, SECOW 4 W and SECOW 5 T) had moderate resistance to Fusarium redolens. Correlation analysis revealed root rot severity was strongly correlated to disease incidence (+0.64, P < 0.001), to proportion of plants with lateral roots (-0.56, P < 0.001), to amount of leaf chlorophyll (-0.53, P < 0.001) and to proportion of plants that died prematurely due to Fusarium redolens infection (+0.45, P < 0.001). No significant correlation was detected between root rot severity and proportion of plants that germinated. The established resistance could be exploited for improvement of farmer preferred cowpea varieties towards Fusarium redolens resistance in Uganda.

In addition, field evaluation studies are recommended as it is essential to evaluate the stability of this resistance in varying environments especially under severe stresses to avoid disease escapes.

Article by Roy Wanjala Namasaka, et al, from Uganda.

Full access: http://mrw.so/RPmeo

Image by MelindaChan ^..^, from Flickr-cc.

评论

此博客中的热门博文

Electron Spin and Proton Spin in the Hydrogen and Hydrogen-Like Atomic Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52202#.VIj7tMnQrzE Author(s) Stanisław Olszewski * Affiliation(s) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland . ABSTRACT The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton ...

Remarks on the Complexity of Signed k-Domination on Graphs

Read  full  paper  at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53574#.VMnXsCzQrzE Author(s)    Chuan-Min Lee 1 , Cheng-Chien Lo 1 , Rui-Xin Ye 2 , Xun Xu 2 , Xiao-Han Shi 2 , Jia-Ying Li 2 Affiliation(s) 1 Department of Computer and Communication Engineering, Ming Chuan University, The First American University in Asia, Taoyuan, Taiwan, Chinese Taipei . 2 Department of Electronic Information Engineering, Fuzhou University, Fuzhou, China . ABSTRACT This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We also show that the problem is linear-time solvable for trees, interval graphs, and chord...

A Review of Technical Requirements for High Penetration of Wind Power Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52361#.VJN8VcCAM4 Author(s)    Yuan-Kang Wu 1 , Tung-Ching Lee 2 , Ting-Yen Hsieh 2 , Wei-Min Lin 2 Affiliation(s) 1 Department of Electrical Engineering, National Chung-Cheng University, Chiayi, Taiwan . 2 Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan . ABSTRACT Renewable portfolio targets have been established in many regions around the world. Regional targets such as 20% renewable energy by year 2020 are not uncommon. As the levels of wind power penetration increase, there are many power system impacts. This work investigated possible challenges and technic...