跳至主要内容

The Economic Burden of Head and Neck Cancers in Denmark

Head and neck cancers originate from the upper aerodigestive tract, including the oral cavity, oropharynx, nasopharynx, hypopharynx, larynx, salivary glands and other sites located in the head and neck area. Smoking, alcohol use and human papilloma virus (HPV) infections are the major risk factors for head and neck cancers. And their treatment depends on the initial localization of the tumor, on the patient’s comorbidity and on the potential side effect of the treatment. The incidence of head and neck cancers has increased markedly over the last decade.

In this paper, the authors aimed to estimate the incidence of head and neck cancers and their health care costs from a hospital perspective. And the results would be used as input into a forthcoming cost-effectiveness analysis of HPV-related cancers and genital warts with the overall objective of estimating the impact of different vaccination programmes.

Data on incidence and health care use related to head and neck cancers were obtained from Danish health care registers. New cancer patients were identified in the Danish National Cancer Register. Resource use per year in the hospital sector was estimated using data from the National Patient Register applying charges as cost estimates. Health care consumption by cancer patients was compared with that by an age- and sex-matched cohort without cancer. And all the data were analyzed by using SAS software version 9.2.

The results showed that nearly 1000 new cases of oral cavity, oropharyngeal, hypopharyngeal and laryngeal cancer are diagnosed annually. In total the cost of these cancers to the Danish hospital sector constituted 31.6 million Euros per year, with the majority of costs (74%) occurring in men. The total costs associated with HPV16/18-related head and neck cancers were estimated to be 6.1 million Euros per year. 

In conclusion, it is expected that the current HPV vaccination programme will reduce this burden.

Article by Jens Olsen, et al, from Denmark.

Full access: http://mrw.so/25shgC

Image by David Goehring, from Flickr-cc.

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university...