跳至主要内容

Global Optimization of a Semiconductor IC Supply Chain Network

Supply chain management (SCM) is defined as a set of approaches used to efficiently integrate suppliers, manufacturers, warehouses, and stores so that products are produced and distributed at the right quantities, to the right locations, and at the right time, in order to minimize overall costs while meeting service level requirements. SCM also pertains to the set of actions and decisions that attempt to synchronize demand and supply with in-process inventories, in order to ensure on-time delivery of product commitments to customers, and optimize the overall manufacturing operations from start to end.

In this paper we develop a framework for the key components of the supply chain of the semiconductor manufacturing process, including front-end (fab) operations and backend (assembly/test) operations. Within this framework we consider the conversion from wafers to units. Then we propose a QP formulation for the profit maximizing objective function with flexible demand ranges per product and fab capacities. We demonstrate the model by applying it to a case study that is based on an industry dataset and show how the solution varies between a local optimization of a single fab (for minimum wafer cost) and a globally optimal solution for the network.

Our model extends on previous work in several respects; most notable is the consideration of varying ASP’s of any product by customer, to reflect segmentation in pricing for differences in quantities sold. Other extensions pertain to the flexibility in setting the demand for each product, and in setting capacity across the product mix such that each fab has a capacity range rather than a fixed number.

On top of these extensions, there are still opportunities for further work. One that immediately comes to mind is the consideration of a different objective function to compare with the proposed quadratic objective function. Other directions include the incorporation of stock points within the supply chain, as they are used in practice to mitigate changes in the demand, and the explicit consideration of sub-problems of the SC problem within the model framework, for example the capacity planning problem for each of the fabs and/or the AT sites.

Article by Adar A. Kalir,et al,from 1 Intel Qiriat-Gat and Ben-Gurion University, Beer-Sheva, Israel

Full access: http://mrw.so/3vdPyG
Image by Fisherss Zhang,from Flickr-cc



评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...