跳至主要内容

Use of Poly-Lactic Acid (PLA) to Enhance Properties of Paper Based on Recycled Pulp

Nowadays, recycled paper is broadly used due to environmental reasons. Furthermore, the addition of starch as a dry strength additive improves the properties of recycled paper. Poly-Lactic Acid (PLA), a product from bio-refinery process, has recently been shown to act as a promising strength additive that could be used in combination with starch to further improve the strength of paper. In this study, the use of PLA of three molecular weights (MW) in combination with four different starches was investigated. Three recycled pulps from different origins, with the kappa number of 27.9 to 66 were used. Paper handsheets were made, and selected paper properties were tested. The results indicate that handsheets properties were influenced by the MW of PLAs, the type of starch used, and the lignin content of the pulp. The paper handsheets made from lignin-rich pulp (pulp A, kappa number 66), combined with 0.1% medium MW PLA (PLA_1) and 0.9% cationic starch containing 0.43% N gave the highest improvement for tensile strength, wet tensile strength, air and water resistance. This result verifies that a higher kappa number pulp has better attraction to the hydrophobic PLA. Moreover, the higher charge cationic starch led to higher tensile strength due to the increase of affinity to the anionic fiber surface. Interestingly, results show that amphoteric starch is a promising substitute for high cationic charge starch when combined with the medium MW PLA to improve tensile strength of paper. This study demonstrated that a starch-PLA blend represents a promising approach in improving properties of recycled paper.

Article by Klaus Doelle,et al,from State University of New York,USA.

Full access: http://mrw.so/2fZdVg
Image by Christine Cavalier,from Flickr-cc.




评论

此博客中的热门博文

Electron Spin and Proton Spin in the Hydrogen and Hydrogen-Like Atomic Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52202#.VIj7tMnQrzE Author(s) Stanisław Olszewski * Affiliation(s) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland . ABSTRACT The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton ...

Remarks on the Complexity of Signed k-Domination on Graphs

Read  full  paper  at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53574#.VMnXsCzQrzE Author(s)    Chuan-Min Lee 1 , Cheng-Chien Lo 1 , Rui-Xin Ye 2 , Xun Xu 2 , Xiao-Han Shi 2 , Jia-Ying Li 2 Affiliation(s) 1 Department of Computer and Communication Engineering, Ming Chuan University, The First American University in Asia, Taoyuan, Taiwan, Chinese Taipei . 2 Department of Electronic Information Engineering, Fuzhou University, Fuzhou, China . ABSTRACT This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We also show that the problem is linear-time solvable for trees, interval graphs, and chord...

A Review of Technical Requirements for High Penetration of Wind Power Systems

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52361#.VJN8VcCAM4 Author(s)    Yuan-Kang Wu 1 , Tung-Ching Lee 2 , Ting-Yen Hsieh 2 , Wei-Min Lin 2 Affiliation(s) 1 Department of Electrical Engineering, National Chung-Cheng University, Chiayi, Taiwan . 2 Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan . ABSTRACT Renewable portfolio targets have been established in many regions around the world. Regional targets such as 20% renewable energy by year 2020 are not uncommon. As the levels of wind power penetration increase, there are many power system impacts. This work investigated possible challenges and technic...