跳至主要内容

Functionalization and Structural Characterization of a Novel Nacrite-LiCl Nanohybrid Material

Read  full  paper  at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53687#.VM83OCzQrzE

ABSTRACT
The nacrite-LiCl hybrid composite material was prepared at room temperature by indirect inter-calation of lithium chloride between the planar layers of nacrite, a clay mineral, using acetone as a solvent. The structural identification of the hybrid clay material was determined by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA) and infrared spectroscopy (IR). The qualitative XRD analysis showed that the basal spacing value increased from 0.72 nm to 1.14 nm and revealed that the alkali halide intercalated successfully in the interlayer space of the nacrite framework. The quantitative XRD analysis allowed us to determine the optimum structural parameters related to the position and number of keyed ions and water molecules per half unit cell calculated along the c* axis and the goodness of fit parameter (Rp). The thermal properties of the elaborated hybrid were in great accordance with the XRD study and confirm the intercalation of the hydrated salt in the interlamellar space of nacrite. Moreover, IR spectroscopy enabled the study of the interactions between the silicate ‘‘networks’’ and the alkali halide.
 
Cite this paper
Jaafar, N. , Naamen, S. , Rhaiem, H. and Amara, A. (2015) Functionalization and Structural Characterization of a Novel Nacrite-LiCl Nanohybrid Material. American Journal of Analytical Chemistry, 6, 202-215. doi: 10.4236/ajac.2015.63019.
 
References
[1]Bergaya, F. and Lagaly, G. (2006) General Introduction: Clays, Clay Minerals, and Clay Science. In: Bergaya, F., Theng, B.K.G. and Lagaly, G., Eds., Handbook of Clay Science: Developments in Clay Science, Vol. 1, Elsevier, Amsterdam, 1-18.
http://dx.doi.org/10.1016/S1572-4352(05)01001-9
 
[2]Silva, F.A.N.G., Luz, A.B., Sampaio, J.A., Bertolino, L.C., Scorzelli, R.B., Duttine, M. and da Silva, F.T. (2009) Technological Characterization of Kaolin: Study of the Case of the Borborema-Serido Region (Brazil). Applied Clay Science, 44, 189-193.
http://dx.doi.org/10.1016/j.clay.2009.01.015
 
[3]Carretero, M.I. and Pozo, M. (2010) Clay and Non-Clay Minerals in the Pharmaceutical and Cosmetic Industries Part II. Active Ingredients. Applied Clay Science, 47, 171-181.
http://dx.doi.org/10.1016/j.clay.2009.10.016
 
[4]Rondón, W., Freire, D., de Benzo, Z., Sifontes, A.B., González, Y., Valero, M. and Brito, J.L. (2013) Application of 3A Zeolite Prepared from Venezuelan Kaolin for Removal of Pb(II) from Wastewater and Its Determination by Flame Atomic Absorption Spectrometry. American Journal of Analytical Chemistry, 4, 584-594.
http://dx.doi.org/10.4236/ajac.2013.410069
 
[5]Kabwadza-Corner, P., Munthali, M.W., Johan, E. and Matsue, N. (2014) Comparative Study of Copper Adsorptivity and Selectivity toward Zeolites. American Journal of Analytical Chemistry, 5, 395-405.
http://dx.doi.org/10.4236/ajac.2014.57048
 
[6]Castellano, M., Turturro, A., Riani, P., Montanari, T., Finocchio, E., Ramis, G. and Busca, G. (2010) Bulk and Surface Properties of Commercial Kaolins. Applied Clay Science, 48, 446-454.
http://dx.doi.org/10.1016/j.clay.2010.02.002
 
[7]Bailey, S.W. (1963) Polymorphism of the Kaolin Minerals. American Mineralogist, 48, 1197-1209.
 
[8]Yariv, S., Lapides, I., Michaelian, K.H. and Lahav, N. (1999) Thermal Intercalation of Alkali Halides into Kaolinite. Journal of Thermal Analysis and Calorimetry, 56, 865-884.
http://dx.doi.org/10.1023/A:1010187029708
 
[9]Yariv, S. and Lapides, I. (2000) The Effect of Mechanochemical Treatments on Clay Minerals and the Mechanochemical Adsorption of Organic Materials onto Clay Minerals. Journal of Materials Synthesis and Processing, 8, 223-233.
 
[10]Komori, Y. and Sugahara, Y. (1998) A Kaolinite-NMF-Methanol Intercalation Compound as a Versatile Intermediate for Further Intercalation Reaction of Kaolinite. Journal of Materials Research, 13, 930-934.
http://dx.doi.org/10.1557/JMR.1998.0128
 
[11]Orzechowski, K., Slonka, T. and Glowinski, J. (2006) Dielectric Properties of Intercalated Kaolinite. Journal of Physics and Chemistry of Solids, 67, 915-919.
http://dx.doi.org/10.1016/j.jpcs.2006.03.001
 
[12]Letaief, S., Diaco, T., Pell, W., Gorelsky, S.I. and Detellier, C. (2008) Ionic Conductivity of Nanostructured Hybrid Materials Designed from Imidazolium Ionic Liquids and Kaolinite. Chemistry of Materials, 20, 7136-7142.
http://dx.doi.org/10.1021/cm800758c
 
[13]Vagvolgyi, V., Kovacs, J., Horvath, E., Kristof, J. and Mako, E. (2008) Investigation of Mechanochemically Modified Kaolinite Surfaces by Thermoanalytical and Spectroscopic Methods. Journal of Colloid and Interface Science, 317, 523-529. http://dx.doi.org/10.1016/j.jcis.2007.09.085
 
[14]Michaelian, K.H., Lapides, I., Lahav, N., Yariv, S. and Brodsky, I. (1998) Infrared Study of the Intercalation of Kaolinite by Caesium Bromide and Caesium Iodide. Journal of Colloid and Interface Science, 204, 389-393.
http://dx.doi.org/10.1006/jcis.1998.5577
 
[15]Ben Haj Amara, A., Ben Brahim, J., Besson, G. and Pons, C.H. (1995) Study of Intercalated Nacrite with Dimethylsufoxide and n-Methylacetamide. Clay Minerals, 30, 295-306.
http://dx.doi.org/10.1180/claymin.1995.030.4.03
 
[16]Ben Haj Amara, A., Ben Rhaiem, H. and Plancon, A. (2000) Structural Evolution of Nacrite as a Function of the Nature of the Intercalated Organic Molecules. Journal of Applied Crystallography, 33, 1351-1359.
http://dx.doi.org/10.1107/S0021889800011730
 
[17]Naamen, S., Ben Rhaiem, H. and Ben Haj Amara, A. (2004) XRD Study of the Nacrite/CsCl/H2O Intercalation Complex. Materials Science Forum, 443-444, 59-64.
 
[18]Jaafar, N., Ben Rhaiem, H. and Ben Haj Amara, A. (2014) Synthesis, Characterization and Applications of a New Nanohybrid Composite: Nacrite/MgCl2·6H2O/Ethanol. International Conference on Composite Materials & Renewable Energy Applications (ICCMREA), IEEE Xplore Digital Library, Sousse, 22-24 January 2014, 1-6.
 
[19]Ben Haj Amara, A., Plancon, A., Ben Brahim, J. and Ben Rhaiem, H. (1998) XRD Study of the Stacking Mode in Natural and Hydrated Nacrite. Materials Science Forum, 278-281, 809-813.
http://dx.doi.org/10.4028/www.scientific.net/MSF.278-281.809
 
[20]Michaelian, K.H., Yariv, S. and Nasser, A. (1991) Study of the Interactions between Caesium Bromide and Kaolinite by Photoacoustic and Diffuse Reflectance Infrared Spectroscopy. Canadian Journal of Chemistry, 69, 749-754.
http://dx.doi.org/10.1139/v91-110
 
[21]Lapides, I., Lahav, N., Michaelian, K.H. and Yariv, S. (1997) X-Ray Study of the Thermal Intercalation of Alkali Halides into Kaolinite. Journal of Thermal Analysis, 49, 1423-1432.
http://dx.doi.org/10.1007/BF01983701
 
[22]Cruz, M., Jacobs, H. and Fripiat, J.J. (1973) Interlayer Bonding in Kaolin Minerals. Proceedings of the International Clay Conference, 1972, CSIC, Madrid: Division de Ciencias, Madrid, Spain, 35-46.
 
[23]Ben Haj Amara, A. (1997) X-Ray Diffraction, Infrared and TGA/DTG Analysis of Hydrated Nacrite. Clay Minerals, 32, 463-470.
http://dx.doi.org/10.1180/claymin.1997.032.3.08
 
[24]Ben Haj Amara, A., Ben Brahim, J., Ben Ayed, N. and Ben Rhaiem, H. (1996) Occurence of Nacrite in Old Pb-Zn Deposits from Northern Tunisia. Clay Minerals, 31, 127-130.
http://dx.doi.org/10.1180/claymin.1996.031.1.11
 
[25]Ben Haj Amara, A., Ben Brahim, J., Plancon, A. and Ben Rhaiem, H. (1998) X-Ray Diffraction Study of the Stacking Modes of Hydrated and Dehydrated Nacrite. Journal of Applied Crystallography, 31, 654-662.
http://dx.doi.org/10.1107/S0021889898000363
 
[26]Weiss, A., Thielepape, W. and Orth, H. (1966) Neue Kaolinit-Einlagerungsverbindungen. In: Rosenquist, T. and Graff-Petterson, P., Eds., Proceedings of the International Clay Conference, Israel University Press, Jerusalem, Vol. 1, 277-293.
 
[27]Garrett, W.G. and Walker, G.F. (1959) The Cation-Exchange Capacity of Hydrated Halloysite and the Formation of Halloysite-Salt Complexes. Clay Minerals, 4, 75-80.
http://dx.doi.org/10.1180/claymin.1959.004.22.02
 
[28]Wiewióra, A. and Brindley, G.W. (1969) Potassium Acetate Intercalation in Kaolinites and Its Removal: Effect of Material Characteristics. Proceedings of the International Clay Conference, L .Heller, Ed., Israel University Press, Jerusalem, Vol. 1, 723-733.
 
[29]Bailey, S.W. (1982) Nomenclature for Regular Interstratifications. Clay Minerals, 17, 243-248.
http://dx.doi.org/10.1180/claymin.1982.017.2.09
 
[30]Drits, V.A. and Tchoubar, C. (1990) The Modelization Method in the Determination of the Structural Characteristics of Some Layer Silicates: Internal Structure of the Layers, Nature and Distribution of Stacking Faults. In: X-Ray Diffraction by Disordered Lamellar Structures, Springer-Verlag, Berlin, 233-303.
 
[31]Ben Rhaiem, H., Tessier, D. and Ben Haj Amara, A. (2000) Mineralogy of the <2 μm Fraction of Three Mixed-Layer Clays from Southern and Central Tunisia. Clay Minerals, 35, 375-381.
http://dx.doi.org/10.1180/000985500546846
 
[32]Howard, S.A. and Preston, K.D. (1989) Profile Fitting of Powder Diffraction Patterns. In: Bish, D.L. and Post, J.E., Eds., Modern Powder Diffraction: Reviews in Mineralogy, Mineralogical Society of America, Washington DC, 217-275.
 
[33]Taser, M., Kucukcelebi, H., Armagan, N. and Güler, C. (1997) Use of R Factors in the Study of the Structural Defects in Phyllosilicates by X-Ray Powder Diffraction. Journal of Applied Crystallography, 30, 55-58.
http://dx.doi.org/10.1107/S0021889896008916
 
[34]Plancon, A. (1981) Diffraction by Layer Containing Different Kinds of Layers and Stacking Faults. Journal of Applied Crystallography, 14, 300-304.
http://dx.doi.org/10.1107/S0021889881009424
 
[35]Cheng, H., Liua, Q., Yang, J., Ma, S. and Frost, R.L. (2012) The Thermal Behavior of Kaolinite Intercalation Complexes—A Review. Thermochimica Acta, 545, 1-13.
http://dx.doi.org/10.1016/j.tca.2012.04.005
 
[36]Naamen, S., Ben Rhaiem, H., Karmous, M.S. and Ben Haj Amara, A. (2004) XRD Study of the Stacking Mode of the Nacrite/Alkali Halides Complexes. Materials Structure, 11.
 
[37]Leluk, K., Orzechowski, K., Jerieb, K., Baranowskib, A., Slonkac, T. and Glowinskic, J. (2010) Dielectric Permittivity of Kaolinite Heated to High Temperatures. Journal of Physics and Chemistry of Solids, 71, 827-831.
http://dx.doi.org/10.1016/j.jpcs.2010.02.008
 
[38]Heller-Kallai, L. (1978) Reactions of Salts with Kaolinite at Elevated Temperatures. Clay Minerals, 13, 221-235.
http://dx.doi.org/10.1180/claymin.1978.013.2.09
 
[39]Gabor, M., Poeppl, L. and Koeros, E. (1986) Effect of Ambient Atmosphere on Solid State Reaction of Kaolin-Salt Mixtures. Clays and Clay Minerals, 34, 529-533.
http://dx.doi.org/10.1346/CCMN.1986.0340505
 
[40]Frost, R.L., Kristof, J., Mako, E. and Kloprogge, J.T. (2000) Modification of the Hydroxyl Surface in Potassium-Acetate-Intercalated Kaolinite between 25 and 300°C. Langmuir, 16, 7421-7428.
http://dx.doi.org/10.1021/la9915318
 
[41]Yariv, S. (1986) Interactions of Minerals of the Kaolin Group with Cesium Chloride and Deuteration of the Complexes. International Journal of Tropical Agricultural, 5, 310-322.
 
[42]Michaelian, K.H., Friesen, W.I., Yariv, S. and Nasser, A. (1991) Diffuse Reflectance Infrared Spectra of Kaolinite and Kaolinite/Alkali Halide Mixtures. Curve-Fitting of the OH Stretching Region. Canadian Journal of Chemistry, 69, 1786-1790.
http://dx.doi.org/10.1139/v91-262                                                                           eww150202lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...