Nutrigenomic Study on Immunomodulatory Function of Cordyceps Mycelium Extract (Paecilomyces hepiali) in Mitomycin C–Treated Mice
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52097#.VIVEKWfHRK1
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52097#.VIVEKWfHRK1
Author(s)
Soo-Wan Chae1,2, Fusako Mitsunaga3,4, Su-Jin Jung2, Ki-Chan Ha5, Hong-Sig Sin6, Seung-Hwan Jang6, Shin Nakamura3.4
1Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Republic of Korea.
2Clinical Trial Center for Functional Foods (CTCF2), Chonbuk National University Hospital, Jeonju, Republic of Korea.
3Intelligence and Technology Lab Inc., Kaizu, Japan.
4NPO Primate Agora, Inuyama, Japan.
5Healthcare Claims & Management Inc., Jeonju, Republic of Korea.
6Chebigen Inc., Jeonju, Republic of Korea.
2Clinical Trial Center for Functional Foods (CTCF2), Chonbuk National University Hospital, Jeonju, Republic of Korea.
3Intelligence and Technology Lab Inc., Kaizu, Japan.
4NPO Primate Agora, Inuyama, Japan.
5Healthcare Claims & Management Inc., Jeonju, Republic of Korea.
6Chebigen Inc., Jeonju, Republic of Korea.
Cordyceps (CS) is a Chinese herb that
produces various effects including immune modulation, and now CS culture
product is interested in the use as a functional food. We prepared CS
mycelium culture extract (Paecilomyces hepiali, CBG-CS-2), CS
extract, for functional foods. This study aimed to deduce the molecular
mechanism of immunomodulatory effect of CS extract in Peyer’s patches
(PPs), a main gut immune site, in mice that treated with mitomycin C
(MMC), an immunosuppressing antibiotics. Nutrigenomics give us
invaluable molecular information about both of foods and nutrition to
improve or maintain good health. Here we performed nutrigenomics using
DNA microarray to investigate the effect of CS extract on gene
expression altered in PPs of the immunosuppressed mice. Interestingly,
CS extract protected from the MMC-mediated downregulation of 22 genes,
which are associated with IgA production and other immune response in
PPs. These suggested that CS extract alleviated the downregulated
expression of immune related genes in the gut immune site in an
immunosuppressed state. Thus CS extract appears to be practical
functional food for immunodepression and/or its related hypofunction.
Cite this paper
Chae, S. , Mitsunaga, F. , Jung, S. , Ha, K. , Sin,
H. , Jang, S. and Nakamura, S. (2014) Nutrigenomic Study on
Immunomodulatory Function of Cordyceps Mycelium Extract (Paecilomyces hepiali) in Mitomycin C–Treated Mice. Food and Nutrition Sciences, 5, 2217-2224. doi: 10.4236/fns.2014.522235.
[1] |
Afman, L. and Müller, M. (2006)
Nutrigenomics: From Molecular Nutrition to Prevention of Disease.
Journal of the American Dietetic Association, 106, 569-576. http://dx.doi.org/10.1016/j.jada.2006.01.001 |
[2] |
Liu, B. and Qian, S.B. (2011)
Translational Regulation in Nutrigenomics. Advances in Nutrition, 2,
511-519.
http://dx.doi.org/10.3945/an.111.001057 |
[3] |
Thunders, M., Mangai, S. and
Cooper, R. (2013) Nutrigenetics, Nutrigenomics, and the Future of
Dietary Advice. Food and Nutrition Sciences, 4, 999-1003. http://dx.doi.org/10.4236/fns.2013.410129 |
[4] |
Paterson, R.R. (2008) Cordyceps:
A Traditional Chinese Medicine and Another Fungal Therapeutic
Biofactory? Phytochemistry, 69, 1469-1495. http://dx.doi.org/10.1016/j.phytochem.2008.01.027 |
[5] |
Zhou, X., Gong, Z., Su, Y., Lin,
J. and Tang, K. (2009) Cordyceps Fungi: Natural Products,
Pharmacological Functions and Developmental Products. The Journal of
Pharmacy and Pharmacology, 61, 279-291.
http://dx.doi.org/10.1211/jpp.61.03.0002 |
[6] |
Shin, S., Kwon, J., Lee, S.,
Kong, H., Lee, S., Lee, C.K., et al. (2010) Immunostimulatory Effects of
Cordyceps militaris on Macrophages through the Enhanced Production of
Cytokines via the Activation of NF-κB. Immune Network, 10, 55-63. http://dx.doi.org/10.4110/in.2010.10.2.55 |
[7] |
Li, S.P., Yang, F.Q. and Tsim,
K.W.K. (2006) Quality Control of Cordyceps sinensis, a Valued
Traditional Chinese Medicine. Journal of Pharmaceutical and Biomedical
Analysis, 41, 1571-1584.
http://dx.doi.org/10.1016/j.jpba.2006.01.046 |
[8] |
Yue, K., Ye, M., Zhou, Z., Sun,
W. and Lin, X. (2013) The Genus Cordyceps: A Chemical and
Pharmacological Review. The Journal of Pharmacy and Pharmacology, 65,
474-493. http://dx.doi.org/10.1111/j.2042-7158.2012.01601.x |
[9] |
Lo, H.C., Hsu, T.H., Tu, S.T.
and Lin, K.C. (2006) Anti-Hyperglycemic Activity of Natural and
Fermented Cordyceps sinensis in Rats with Diabetes Induced by
Nicotinamide and Streptozotocin. The American Journal of Chinese
Medicine, 34, 819-832. http://dx.doi.org/10.1142/S0192415X06004314 |
[10] | Xiao, J.H., Li, Y., Xiao, Y. and Zhong, J.J. (2013) Advance and Prospect of Studies on Bioactivity and Mechanism of Cordyceps Fungi. Zhongguo Zhong Yao Za Zhi, 38, 640-647. |
[11] |
Yan, W., Li, T., Lao, J., Song,
B. and Shen, Y.H. (2013) Anti-Fatigue Property of Cordyceps
guangdongensis and the Underlying Mechanisms. Pharmaceutical Biology,
51, 614-620. http://dx.doi.org/10.3109/13880209.2012.760103 |
[12] |
Kim, H.O. and Yun, J.W. (2005) A
Comparative Study on the Production of Exopolysaccharides between Two
Entomopathogenic Fungi Cordyceps militaris and Cordyceps sinensis in
Submerged Mycelial Cultures. Journal of Applied Microbiology, 99,
728-738. http://dx.doi.org/10.1111/j.1365-2672.2005.02682.x |
[13] |
Xu, C.P., Sinha, J., Bae, J.T.,
Kim, S.W. and Yun, J.W. (2006) Optimization of Physical Parameters for
Exo-Biopolymer Production in Submerged Mycelial Cultures of Two
Entomopathogenic Fungi Paecilomyces japonica and Paecilomyces tenuipes.
Letters in Applied Microbiology, 42, 501-506. http://dx.doi.org/10.1111/j.1472-765X.2006.01884.x |
[14] |
Doe, W.F. (1989) The Intestinal Immune System. Gut, 30, 1679-1685. http://dx.doi.org/10.1136/gut.30.12.1679 |
[15] |
Walker, R.L. and Owen, R.L.
(1990) Intestinal Barriers to Bacteria and Their Toxins. Annual Review
of Medicine, 41, 393-400. http://dx.doi.org/10.1146/annurev.me.41.020190.002141 |
[16] |
Lycke, N.Y. and Bemark, M.
(2012) The Role of Peyer’s Patches in Synchronizing Gut IgA Responses.
Frontiers in Immunology, 3, 329. http://dx.doi.org/10.3389/fimmu.2012.00329 |
[17] |
Sato, A. and Iwasaki, A. (2005)
Intestinal Epithelial Barrier and Mucosal Immunity. Cellular and
Molecular Life Sciences, 62, 1333-1338. http://dx.doi.org/10.1007/s00018-005-5037-z |
[18] |
Hashizume, T., Togawa, A.,
Nochi, T., Igarashi, O., Kweon, M.N., Kiyono, H. and Yamamoto, M. (2008)
Peyer’s Patches Are Required for Intestinal Immunoglobulin A Responses
to Salmonella spp. Infection and Immunity, 76, 927-934. http://dx.doi.org/10.1128/IAI.01145-07 |
[19] | Yamaguchi, Y., Mori, K. and Bollinger, R.R. (1990) Suppression of Hepatic Allograft Rejection in the Rat by Mitomycin C-Treated Donor Splenocytes: Analysis of the Immune Status. Journal of Clinical & Laboratory Immunology, 32, 59-66. |
[20] |
Micheau, O., Solary, E.,
Hammann, A., Martin, F. and Dimanche-Boitrel, M.T. (1997) Sensitization
of Cancer Cells Treated with Cytotoxic Drugs to Fas-Mediated
Cytotoxicity. Journal of the National Cancer Institute, 89, 783-789.
http://dx.doi.org/10.1093/jnci/89.11.783 |
[21] | Volpato, M. and Phillips, R.M. (2007) Tailoring Targeted Therapy to Individual Patients: Lessons to Be Learnt from the Development of Mitomycin C. Cancer Genomics & Proteomics, 4, 175-186. |
[22] | Li, A.L., Komatsu, Y., Ono, Y., Nakatani, F., Nakashima, K. and Yamaguchi, N. (1996) The Effect of Herbal Medicines on the Immunodeficient Animals by Injecting Cancer Chemotherapeutic Agent-Special Reference to Age Related Recovery of the Function. Kansenshogaku Zasshi, 70, 717-726. |
[23] | Jeong, A.R., Nakamura, S. and Mitsunaga, F. (2008) Gene Expression Profile of Th1 and Th2 Cytokines and Their Receptors in Human and Nonhuman Primates. Journal of Medical Primatology, 37, 290-296. |
[24] |
Shippy, R., Fulmer-Smentek, S.,
Jensen, R.V., Jones, W.D., Wolber, P.K., Johnson, C.D., et al. (2006)
Using RNA Sample Titrations to Assess Microarray Platform Performance
and Normalization Techniques. Nature Biotechnology, 24, 1123-1131. http://dx.doi.org/10.1038/nbt1241 |
[25] |
Li, C.Y., Chiang, C.S., Tsai,
M.L., Hseu, R.S., Shu, W.Y., Chuang, C.Y., et al. (2009) Two-Sided
Effect of Cordyceps sinensis on Dendritic Cells in Different
Physiological Stages. Journal of Leukocyte Biology, 85, 987-995.
http://dx.doi.org/10.1189/jlb.0908573 |
[26] |
Lin, B.Q. and Li, S.P. (2011)
Chapter 5. Cordyceps as an Herbal Drug. In: Benzie, F.F. and
Wachtel-Galor, S., Eds., Herbal Medicine: Biomolecular and Clinical
Aspects, 2nd Edition, CRC Press, Boca Raton, 73-105.
http://dx.doi.org/10.1201/b10787-6 |
[27] |
Trapani, J.A. and Smyth, M.J.
(2002) Functional Significance of the Perforin/Granzyme Cell Death
Pathway. Nature Reviews Immunology, 2, 735-747. http://dx.doi.org/10.1038/nri911 |
[28] |
Cupedo, T. (2011) Human Lymph
Node Development: An Inflammatory Interaction. Immunology Letters, 138,
4-6.
http://dx.doi.org/10.1016/j.imlet.2011.02.008 |
[29] |
Yang, L.Y., Chen, A., Kuo, Y.C.
and Lin, C.Y. (1999) Efficacy of a Pure Compound H1-A Extracted from
Cordyceps sinensis on Autoimmune Disease of MRL lpr/lpr Mice. The
Journal of Laboratory and Clinical Medicine, 134, 492-500. http://dx.doi.org/10.1016/S0022-2143(99)90171-3 |
[30] |
Kuo, Y.C., Tsai, W.J., Wang,
J.Y., Chang, S.C., Lin, C.Y. and Shiao, M.S. (2001) Regulation of
Bronchoalveolar Lavage Fluids Cell Function by the Immunomodulatory
Agents from Cordyceps sinensis. Life Sciences, 68, 1067-1082.
http://dx.doi.org/10.1016/S0024-3205(00)01011-0 |
[31] |
Yanagibashi, T., Hosono, A.,
Oyama, A., Tsuda, M., Hachimura, S., Takahashi, Y., et al. (2009)
Bacteroides Induce Higher IgA Production than Lactobacillus by
Increasing Activation-Induced Cytidine Deaminase Expression in B Cells
in Murine Peyer’s Patches. Bioscience, Biotechnology, and Biochemistry,
73, 372-377.
http://dx.doi.org/10.1271/bbb.80612 |
[32] |
Maeda, S., Ohno, K.,
Fujiwara-Igarashi, A., Tomiyasu, H., Fujino, Y. and Tsujimoto, H. (2014)
Methylation of TNFRSF13B and TNFRSF13C in Duodenal Mucosa in Canine
Inflammatory Bowel Disease and Its Association with Decreased Mucosal
IgA Expression. Veterinary Immunology and Immunopathology, 160, 97-106.
http://dx.doi.org/10.1016/j.vetimm.2014.04.005 |
[33] |
Tezuka, H., Abe, Y., Iwata, M.,
Takeuchi, H., Ishikawa, H., Matsushita, M., et al. (2007) Regulation of
IgA Production by Naturally Occurring TNF/iNOS-Producing Dendritic
Cells. Nature, 448, 929-933.
http://dx.doi.org/10.1038/nature06033 |
[34] |
De Calisto, J., Wang, N., Wang,
G., Yigit, B., Engel, P. and Terhorst, C. (2014) SAP-Dependent and
-Independent Regulation of Innate T Cell Development Involving SLAMF
Receptors. Frontiers in Immunology, 5, 186.
http://dx.doi.org/10.3389/fimmu.2014.00186 |
[35] |
Bai, Z., Hayasaka, H.,
Kobayashi, M., Li, W., Guo, Z., Jang, M.H., et al. (2009) CXC Chemokine
Ligand 12 Promotes CCR7-Dependent Naive T Cell Trafficking to Lymph
Nodes and Peyer’s Patches. Journal of Immunology, 182, 1287-1295. http://dx.doi.org/10.4049/jimmunol.182.3.1287 |
[36] |
Yokouchi, M., Suzuki, R.,
Masuhara, M., Komiya, S., Inoue, A. and Yoshimura, A. (1997) Cloning and
Characterization of APS, an Adaptor Molecule Containing PH and SH2
Domains that Is Tyrosine Phosphorylated upon B-Cell Receptor
Stimulation. Oncogene, 15, 7-15. http://dx.doi.org/10.1038/sj.onc.1201163 |
[37] |
Kroll, J., Shi, X., Caprioli,
A., Liu, H.H., Waskow, C., Lin, K.M., et al. (2005) The BTB-Kelch
Protein KLHL6 is Involved in B-Lymphocyte Antigen Receptor Signaling and
Germinal Center Formation. Molecular and Cellular Biology, 25,
8531-8540. http://dx.doi.org/10.1128/MCB.25.19.8531-8540.2005 |
[38] |
Walter, W., Scheuer, C.,
Lingnau, K., Reichert, T.E., Schmitt, E., Loos, M. and Maeurer, M.J.
(2000) H2-M, a Facilitator of MHC Class II Peptide Loading, and Its
Negative Modulator H2-O Are Differentially Expressed in Response to
Proinflammatory Cytokines. Immunogenetics, 51, 794-804. http://dx.doi.org/10.1007/s002510000210 eww141208lx |
评论
发表评论