HDL-Mediated Protection of Coronary Vasodilator Response to Adenosine in the Hypercholesterolemic Swine
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51835#.VHfUEWfHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51835#.VHfUEWfHRK0
Author(s)
It is known that high-cholesterol diet impairs
coronary vasodilatation in animal models of athe-rosclerosis
irrespective of overt pathology. We evaluated the specific role of LDL
and HDL on adenosine-elicited coronary vasodilatation after short time
(10 weeks) high-cholesterol diet in pigs. Nineteen pigs on standard (C),
atherogenic (HF) and alternate standard or atherogenic diet every other
week (IHF) underwent left coronary angiography and flow (CFR)
measurement during intracoronary adenosine injection. Total cholesterol,
HDL, LDL, Apo lipoprotein A-1, IL-6, TNF-α and ICAM-1 were measured and
histology of coronary samples was performed. IHF and HF show comparable
intimal thickening of lesions, similar cholesterol (598.4 ± 198.2 and
633.2 ± 83.5 mg/dL) and LDL (502.6 ± 193.7 and 576.1 ± 83.2), while HDL
is double in IHF group (88.3 ± 6.4 vs 46.4 ± 18.7 p < 0.0001).
Vasodilation is reduced in HF (CFR = 1.6 ± 0.2, p < 0.001) as
compared to C (2.6 ± 0.4), whilst it is preserved in IHF (2.7 ± 0.4).
CFR and HDL values of all hypercholesterolemia cases are positively
correlated (r = 0.88, p < 0.001). No relation with cytokines/cell
adhesion markers is present. These findings suggest for the first time
that elevation of plasma HDL level counteracts LDL related vasodilation
impairment during coronary atherogenesis in swine.
KEYWORDS
Cite this paper
Vozzi, F. , Pelosi, G. , Puntoni, M. , Viglione, F. ,
Rocchiccioli, S. , Kusmic, C. , Bernini, F. , Marraccini, P. ,
Trivella, M. and Parodi, O. (2014) HDL-Mediated Protection of
Coronary Vasodilator Response to Adenosine in the Hypercholesterolemic
Swine. Open Journal of Molecular and Integrative Physiology, 4, 49-61. doi: 10.4236/ojmip.2014.44006.
[1] | Abebe, W. and Mustafa, S.J. (1997) Effect of Low Density Lipoprotein on Adenosine Receptor-Mediated Coronary Vasorelaxation in Vitro. Journal of Pharmacology and Experimental Therapeutics, 282, 851-857. |
[2] |
Rodriguez-Porcel, M., Lerman,
A., Ritman, E.L., et al. (2000) Altered Myocardial Microvascular 3D
Architecture in Experimental Hypercholesterolemia. Circulation, 102,
2028-2030. http://dx.doi.org/10.1161/01.CIR.102.17.2028 |
[3] |
Rodriguez-Porcel, M., Lerman,
A., Best, P.J., et al. (2001) Hypercholesterolemia Impairs Myocardial
Perfusion and Permeability: Role of Oxidative Stress and Endogenous
Scavenging Activity. Journal of the American College of Cardiology, 37,
608-615. http://dx.doi.org/10.1016/S0735-1097(00)01139-6 |
[4] |
Theilmeier, G., Verhamme, P.,
Dymarkowski, S., et al. (2002) Hypercholesterolemia in Minipigs Impairs
Left Ventricular Response to Stress: Association with Decreased Coronary
Flow Reserve and Reduced Capillary Density. Circulation, 106,
1140-1146. http://dx.doi.org/10.1161/01.CIR.0000026805.41747.54 |
[5] |
Mathew, V., Cannan, C.R.,
Miller, V.M., et al. (1997) Enhanced Endothelin-Mediated Coronary
Vasoconstriction and Attenuated Basal Nitric Oxide Activity in
Experimental Hypercholesterolemia. Circulation, 96, 1930-1936. http://dx.doi.org/10.1161/01.CIR.96.6.1930 |
[6] | Chen, C.H. and Henry, P.D. (1997) Atherosclerosis as a Microvascular Disease: Impaired Angiogenesis Mediated by Suppressed Basic Fibroblast Growth Factor Expression. Proceedings of the Association of American Physicians, 109, 351-361. |
[7] |
Mannheim, D., Versari, D.,
Daghini, E., et al. (2007) Impaired Myocardial Perfusion Reserve in
Experimental Hypercholesterolemia Is Independent of Myocardial
Neovascularization. American Journal of Physiology—Heart and Circulatory
Physiology, 292, H2449-H2458. http://dx.doi.org/10.1152/ajpheart.01215.2006 |
[8] |
Bender, S.B., Tune, J.D.,
Borbouse, L., et al. (2009) Altered Mechanism of Adenosine-Induced
Coronary Arteriolar Dilation in Early-Stage Metabolic Syndrome.
Experimental Biology and Medicine (Maywood), 234, 683-692. http://dx.doi.org/10.3181/0812-RM-350 |
[9] |
Heaps, C.L., Jeffery, E.C.,
Laine, G.A., et al. (2008) Effects of Exercise Training and
Hypercholesterolemia on Adenosine Activation of Voltage-Dependent K+
Channels in Coronary Arterioles. Journal of Applied Physiology, 105,
1761-1771. http://dx.doi.org/10.1152/japplphysiol.90958.2008 |
[10] | Borbouse, L., Dick, G.M., Payne, G.A., et al. (2010) Metabolic Syndrome Reduces the Contribution of K+ Channels to Ischemic Coronary Vasodilation. American Journal of Physiology—Heart and Circulatory Physiology, 298, H1182-H1189. |
[11] |
Wang, W., Hein, T.W., Zhang, C.,
Zawieja, D.C., Liao, J.C. and Kuo, L. (2010) Oxidized Low-Density
Lipoprotein Inhibits Nitric Oxide-Mediated Coronary Arteriolar Dilation
by Up-Regulating Endothelial Arginase I. Microcirculation, 18, 36-45. http://dx.doi.org/10.1111/j.1549-8719.2010.00066.x |
[12] |
Zeiher, A.M., Drexler, H.,
Wollschläger, H. and Just, H. (1991) Endothelial Dysfunction of the
Coronary Microvasculature Is Associated with Coronary Blood Flow
Regulation in Patients with Early Atherosclerosis. Circulation, 84,
1984-1992. http://dx.doi.org/10.1161/01.CIR.84.5.1984 |
[13] |
Seiler, C., Hess, O.M., Buechi,
M., Suter, T.M. and Krayenbuehl, H.P. (1993) Influence of Serum
Cholesterol and Other Coronary Risk Factors on Vasomotion of
Angiographically Normal Coronary Arteries. Circulation, 88, 2139-2148. http://dx.doi.org/10.1161/01.CIR.88.5.2139 |
[14] |
Drexler, H., Zeiher, A.M.,
Meinzer, K. and Just, H. (1991) Correction of Endothelial Dysfunction in
Coronary Microcirculation of Hypercholesterolaemic Patients by
L-Arginine. Lancet, 338, 1546-1550. http://dx.doi.org/10.1016/0140-6736(91)92372-9 |
[15] |
Creager, M.A., Gallagher, S.J.,
Girerd, X.J., Coleman, S.M., Dzau, V.J. and Cooke, J.P. (1992)
L-Arginine Improves Endothelium-Dependent Vasodilation in
Hypercholesterolemic Humans. Journal of Clinical Investigation, 90,
1248- 1253. http://dx.doi.org/10.1172/JCI115987 |
[16] |
Leung, W.H., Lau, C.P. and Wong,
C.K. (1993) Beneficial Effect of Cholesterol-Lowering Therapy on
Coronary Endothelium-Dependent Relaxation in Hypercholesterolaemic
Patients. The Lancet, 341, 1496-1500. http://dx.doi.org/10.1016/0140-6736(93)90634-S |
[17] |
Egashira, K., Hirooka, Y., Kai,
H., Sugimachi, M., Suzuki, S., Inou, T. and Takeshita, A. (1994)
Reduction in Serum Cholesterol with Pravastatin Improves
Endothelium-Dependent Coronary Vasomotion in Patients with
Hypercholesterolemia. Circulation, 89, 2519-2524.
http://dx.doi.org/10.1161/01.CIR.89.6.2519 |
[18] |
Treasure, C.B., Klein, J.L.,
Weintraub, W.S., Talley, J.D., Stillabower, M.E., Kosinski, A.S., et al.
(1995) Beneficial Effects of Cholesterol-Lowering Therapy on the
Coronary Endothelium in Patients with Coronary Artery Disease. New
England Journal of Medicine, 332, 481-487. http://dx.doi.org/10.1056/NEJM199502233320801 |
[19] |
Anderson, T.J., Meredith, I.T.,
Yeung, A.C., Frei, B., Selwyn, A.P. and Ganz, P. (1995) The Effect of
Cholesterol-Lowering and Antioxidant Therapy on Endothelium-Dependent
Coronary Vasomotion. New England Journal of Medicine, 332, 488-493. http://dx.doi.org/10.1056/NEJM199502233320802 |
[20] |
Matsuda, Y., Hirata, K., Inoue,
N., Suematsu, M., Kawashima, S., Akita, H. and Yokoyama, M. (1993) High
Density Lipoprotein Reverses Inhibitory Effect of Oxidized Low Density
Lipoprotein on Endothelium-Dependent Arterial Relaxation. Circulation
Research, 72, 1103-1109. http://dx.doi.org/10.1161/01.RES.72.5.1103 |
[21] |
Bisoendial, R.J., Hovingh, G.K.,
Levels, J.H.M., Lerch, P.G., Andresen, I., Hayden, M.R., et al. (2003)
Restoration of Endothelial Function by Increasing High-Density
Lipoprotein in Subjects with Isolated Low High-Density Lipoprotein.
Circulation, 107, 2944-2948. http://dx.doi.org/10.1161/01.CIR.0000070934.69310.1A |
[22] |
Kaufmann, P.A., Gnecchi-Ruscone,
T., Schäfers, K.P., Lüscher, T.F. and Camici, P.G. (2000) Low Density
Lipoprotein Cholesterol and Coronary Microvascular Dysfunction in
Hypercholesterolemia. Journal of the American College of Cardiology, 36,
103-109.
http://dx.doi.org/10.1016/S0735-1097(00)00697-5 |
[23] |
Moghadasian, M.H., Frohlich,
J.J. and McManus, B.M. (2001) Advances in Experimental Dyslipidemia and
Atherosclerosis. Laboratory Investigation, 81, 1173-1183.
http://dx.doi.org/10.1038/labinvest.3780331 |
[24] | Vilahur, G., Padro, T. and Badimon, L. (2011) Atherosclerosis and Thrombosis: Insights from Large Animal Models. Journal of Biomedicine and Biotechnology, 2011, Article ID: 907575. |
[25] |
Busnelli, M., Froio, A., Bacci,
M.L., Giunti, M., Cerrito, M.G., Giovannoni, R., et al. (2009)
Pathogenetic Role of Hypercholesterolemia in a Novel Preclinical Model
of Vascular Injury in Pigs. Atherosclerosis, 207, 384-390. http://dx.doi.org/10.1016/j.atherosclerosis.2009.05.022 |
[26] | Schaefer, E.J., Levy, R.I., Ernst, N.D., Van Sant, F.D. and Brewer Jr., H.B. (1981) The Effects of Low Cholesterol, High Polyunsaturated Fat, and Low Fat Diets on Plasma Lipid and Lipoprotein Cholesterol Levels in Normal and Hypercholesterolemic Subjects. American Journal of Clinical Nutrition, 34, 1758-1763. |
[27] | Ehnholm, C., Huttunen, J.K., Pietinen, P., Leino, U., Mutanen, M., Kostiainen, E., et al. (1982) Effect of Diet on Serum Lipoproteins in a Population with a High Risk of Coronary Heart Disease. New England Journal of Medicine, 307, 850-855. http://dx.doi.org/10.1056/NEJM198209303071403 |
[28] | Sattler, K.J.E., Galili, O., Rodriguez-Porcel, M., Krier, J.D., Lerman, L.O. and Lerman, A. (2006) Dietary Reversal of Experimental Hypercholesterolemia Improves Endothelial Dysfunction of Epicardial Arteries but Not of Small Coronary Vessels in Pigs. Atherosclerosis, 188, 301-308. http://dx.doi.org/10.1016/j.atherosclerosis.2005.11.009 |
[29] |
Artinger, S., Deiner, C.,
Loddenkemper, C., Schwimmbeck, P.L., Schultheiss, H.P. and Pels, K.
(2009) Complex Porcine Model of Atherosclerosis: Induction of Early
Coronary Lesions after Long-Term Hyperlipidemia without Sustained
Hyperglycemia. Canadian Journal of Cardiology, 25, e109-e114. http://dx.doi.org/10.1016/S0828-282X(09)70068-6 |
[30] | Puccinelli, E., Gervasi, P.G., Trivella, M.G., et al. (2014) Modulation of Lipid Homeostasis in Response to Continuous or Intermittent High-Fat Diet in Pigs. Animal: An International Journal of Animal Bioscience. |
[31] |
Stary, H.C., Chandler, A.B.,
Glagov, S., Guyton, J.R., Insull Jr., W., Rosenfeld, M.E., et al. (1994)
A Definition of Initial, Fatty Streak, and Intermediate Lesions of
Atherosclerosis. A Report from the Committee on Vascular Lesions of the
Council on Arteriosclerosis, American Heart Association. Circulation,
89, 2462-2478. http://dx.doi.org/10.1161/01.CIR.89.5.2462 |
[32] | Friedewald, W.T., Levy, R.I. and Fredrickson, D.S. (1972) Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clinical Chemistry, 18, 499-502. |
[33] |
Franzini, M., Ottaviano, V.,
Fierabracci, V., Bramanti, E., Zyw, L., Barsacchi, R., et al. (2008)
Fractions of Plasma Gamma-Glutamyltransferase in Healthy Individuals:
Reference Values. Clinica Chimica Acta, 395, 188-189. http://dx.doi.org/10.1016/j.cca.2008.06.005 |
[34] |
Franzini, M., Bramanti, E.,
Ottaviano, V., Ghiri, E., Scatena, F., Barsacchi, R., et al. (2008) A
High Performance Gel Filtration Chromatography Method for
Gamma-Glutamyltransferase Fraction Analysis. Analytical Biochemistry,
374, 1-6. http://dx.doi.org/10.1016/j.ab.2007.10.025 |
[35] |
Stary, H.C. (2000) Natural
History and Histological Classification of Atherosclerotic Lesions: An
Update. Arteriosclerosis, Thrombosis, and Vascular Biology, 20,
1177-1178. http://dx.doi.org/10.1161/01.ATV.20.5.1177 |
[36] |
Virmani, R., Kolodgie, F.D.,
Burke, A.P., Farb, A. and Schwartz, S.M. (2000) Lessons from Sudden
Coronary Death: A Comprehensive Morphological Classification Scheme for
Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular
Biology, 20, 1262-1275. http://dx.doi.org/10.1161/01.ATV.20.5.1262 |
[37] |
Matsuzawa-Nagata, N., Takamura,
T., Ando, H., Nakamura, S., Kurita, S., Misu, H., et al. (2008)
Increased Oxidative Stress Precedes the Onset of High-Fat Diet-Induced
Insulin Resistance and Obesity. Metabolism-Clinical and Experimental,
57, 1071-1077. http://dx.doi.org/10.1016/j.metabol.2008.03.010 |
[38] |
Schwab, D.A., Rea, T.J.,
Hanselman, J.C., Bisgaier, C.L., Krause, B.R. and Pape, M.E. (2000)
Elevated Hepatic Apolipoprotein AI Transcription Is Associated with
Diet-Induced Hyperalphalipoproteinemia in Rabbits. Life Sciences, 66,
1683-1694. http://dx.doi.org/10.1016/S0024-3205(00)00491-4 |
[39] |
Onat, A., Hergenç, G., Bulur,
S., Ugur, M., Küçükdurmaz, Z. and Can, G. (2010) The Paradox of High
Apolipoprotein A-I Levels Independently Predicting Incident Type-2
Diabetes among Turks. International Journal of Cardiology, 142, 72-79. http://dx.doi.org/10.1016/j.ijcard.2008.12.066 |
[40] |
Busnelli, M., Manzini, S.,
Froio, A., Vargiolu, A., Cerrito, M.G., Smolenski, R.T., et al. (2013)
Diet Induced Mild Hypercholesterolemia in Pigs: Local and Systemic
Inflammation, Effects on Vascular Injury—Rescue by High-Dose Statin
Treatment. PLoS ONE, 8, e80588. http://dx.doi.org/10.1371/journal.pone.0080588 |
[41] |
Wilson, S.H., Simari, R.D.,
Best, P.J., Peterson, T.E., Lerman, L.O., Aviram, M., et al. (2001)
Simvastatin Preserves Coronary Endothelial Function in
Hypercholesterolemia in the Absence of Lipid Lowering. Arteriosclerosis,
Thrombosis, and Vascular Biology, 21, 122-128. http://dx.doi.org/10.1161/01.ATV.21.1.122 |
[42] |
Puccinelli, E., Gervasi, P.G.,
Pelosi, G., Puntoni, M. and Longo, V. (2013) Modulation of Cytochrome
P450 Enzymes in Response to Continuous or Intermittent High-Fat Diet in
Pigs. Xenobiotica, 43, 686-698. http://dx.doi.org/10.3109/00498254.2012.756558 |
[43] |
Shrestha, C., Ito, T., Kawahara,
K.I., Shrestha, B., Yamakuchi, M., Hashiguchi, T. and Maruyama, I.
(2013) Saturated Fatty Acid Palmitate Induces Extracellular Release of
Histone H3: A Possible Mechanistic Basis for High-Fat Diet-Induced
Inflammation and Thrombosis. Biochemical and Biophysical Research
Communications, 437, 573-578. http://dx.doi.org/10.1016/j.bbrc.2013.06.117 |
[44] |
Lin, H.L., Shen, K.P., Chang,
W.T., Lin, J.C., An, L.M., Chen, I.J. and Wu, B.N. (2013) Eugenosedin—A
Prevents High-Fat Diet Increased Adhesion Molecules through Inhibition
of MAPK-and p65-Mediated NF-κB Pathway in Rat Model. Journal of Pharmacy
and Pharmacology, 65, 300-309. http://dx.doi.org/10.1111/j.2042-7158.2012.01597.x |
[45] | Fotis, L., Agrogiannis, G., Vlachos, I.S., Pantopoulou, A., Margoni, A., Kostaki, M., et al. (2012) Intercellular Adhesion Molecule (ICAM)-1 and Vascular Cell Adhesion Molecule (VCAM)-1 at the Early Stages of Atherosclerosis in a Rat Model. In Vivo, 26, 243-250. |
[46] |
Nofer, J.R., van der Giet, M.,
Tölle, M., Wolinska, I., von Wnuck Lipinski, K., Baba, H.A., et al.
(2004) HDL Induces NO-Dependent Vasorelaxation via the Lysophospholipid
Receptor S1P3. Journal of Clinical Investigation, 113, 569- 581. http://dx.doi.org/10.1172/JCI200418004 |
[47] |
Spieker, L.E., Sudano, I.,
Hürlimann, D., Lerch, P.G., Lang, M.G., Binggeli, C., et al. (2002)
High-Density Lipoprotein Restores Endothelial Function in
Hypercholesterolemic Men. Circulation, 105, 1399-1402. http://dx.doi.org/10.1161/01.CIR.0000013424.28206.8F |
[48] | Zanzinger, J. and Bassenge, E. (1993) Coronary Vasodilation to Acetylcholine, Adenosine and Bradykinin in Dogs: Effects of Inhibition of NO-Synthesis and Captopril. European Heart Journal, 14, 164-168. |
[49] |
Smits, P., Williams, S.B.,
Lipson, D.E., Banitt, P., Rongen, G.A. and Creager, M.A. (1995)
Endothelial Release of Nitric Oxide Contributes to the Vasodilator
Effect of Adenosine in Humans. Circulation, 92, 2135-2141. http://dx.doi.org/10.1161/01.CIR.92.8.2135 |
[50] | Heaps, C.L., Tharp, D.L. and Bowles, D.K. (2004) Hypercholesterolemia Abolishes Voltage-Dependent K+ Channel Contribution to Adenosine-Mediated Relaxation in Porcine Coronary Arterioles. American Journal of Physiology: Heart and Circulatory Physiology, 288, H568-H576. |
[51] |
Galderisi, M., Capaldo, B.,
Sidiropulos, M., D’Errico, A., Ferrara, L., Turco, A., et al. (2007)
Determinants of Reduction of Coronary Flow Reserve in Patients with Type
2 Diabetes Mellitus or Arterial Hypertension without Angiographically
Determined Epicardial Coronary Stenosis. American Journal of
Hypertension, 20, 1283-1290. http://dx.doi.org/10.1016/j.amjhyper.2007.08.005 |
[52] |
Gordon, D.J., Probstfield, J.L.,
Garrison, R.J., Neaton, J.D., Castelli, W.P., Knoke, J.D., et al.
(1989) High-Density Lipoprotein Cholesterol and Cardiovascular Disease.
Four Prospective American Studies. Circulation, 79, 8-15. http://dx.doi.org/10.1161/01.CIR.79.1.8 |
[53] |
Leroith, D. (2012)
Pathophysiology of the Metabolic Syndrome: Implications for the
Cardiometabolic Risks Associated With Type 2 Diabetes. The American
Journal of the Medical Sciences, 343, 13-16. http://dx.doi.org/10.1097/MAJ.0b013e31823ea214 |
[54] |
Nakou, E.S., Filippatos, T.D.,
Kiortsis, D.N., Derdemezis, C.S., Tselepis, A.D., Mikhailidis, D.P. and
Elisaf, M.S. (2008) The Effects of Ezetimibe and Orlistat, Alone or in
Combination, on High-Density Lipoprotein (HDL) Subclasses and
HDL-Associated Enzyme Activities in Overweight and Obese Patients with
Hyperlipidaemia. Expert Opinion on Pharmacotherapy, 9, 3151-3158. http://dx.doi.org/10.1517/14656560802548430 |
[55] |
Filippatos, T.D., Liberopoulos,
E.N., Kostapanos, M., Gazi, I.F., Papavasiliou, E.C., Kiortsis, D.N.,
Tselepis, A.D. and Elisaf, M.S. (2008) The Effects of Orlistat and
Fenofibrate, Alone or in Combination, on High-Density Lipoprotein
Subfractions and Pre-beta1-HDL Levels in Obese Patients with Metabolic
Syndrome. Diabetes, Obesity and Metabolism, 10, 476-483. http://dx.doi.org/10.1111/j.1463-1326.2007.00733.x |
[56] |
Wedel, H., McMurray, J.J.,
Lindberg, M., et al. (2009) Predictors of Fatal and Non-Fatal Outcomes
in the Controlled Rosuvastatin Multinational Trial in Heart Failure
(CORONA): Incremental Value of Apolipoprotein A-1, High-Sensi- tivity
C-Reactive Peptide and N-Terminal Pro B-Type Natriuretic Peptide.
European Journal of Heart Failure, 11, 281-291.
http://dx.doi.org/10.1093/eurjhf/hfn046 |
[57] | Markel, A. (2011) The Resurgence of Niacin: From Nicotinic Acid to Niaspan/Laropiprant. Israel Medical Association Journal, 13, 368-374. |
[58] |
Sirtori, C.R. (2011)
Investigational CETP Antagonists for Hyperlipidemia and Atherosclerosis
Prevention. Expert Opinion on Investigational Drugs, 20, 1543-1554.
http://dx.doi.org/10.1517/13543784.2011.614946 |
[59] | Chenevard, R., Hürlimann, D., Spieker, L., Béchir, M., Enseleit, F., Hermann, M., et al. (2010) Reconstituted HDL in Acute Coronary Syndromes. Cardiovascular Therapeutics, 30, e51-e57. |
[60] |
Sherman, C.B., Peterson, S.J.
and Frishman, W.H. (2010) Apolipoprotein A-I Mimetic Peptides: A
Potential New Therapy for the Prevention of Atherosclerosis. Cardiology
in Review, 18, 141-147. http://dx.doi.org/10.1097/CRD.0b013e3181c4b508 |
[61] |
Stokes, K.Y., Cooper, D.,
Tailor, A. and Granger, D.N. (2002) Hypercholesterolemia Promotes
Inflammation and Microvascular Dysfunction: Role of Nitric Oxide and
Superoxide1. Free Radical Biology and Medicine, 33, 1026-1036. http://dx.doi.org/10.1016/S0891-5849(02)01015-8 eww141128lx |
评论
发表评论