Dependency, the Thermoelectric Figure of Merit of a Material Consisting of Particles on the Parameters of a Material
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50266#.VDNZv1fHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50266#.VDNZv1fHRK0
Author(s)
The properties of a ball-shaped semiconductor
particles and metal particles with a semiconductor thin film on the
surface thereof are established. So the dimensionless thermoelectric
figure of merit of a material consisting of a large number of these
particles is equal to 10 - 100.
Cite this paper
Kharlamov, F. and Kharlamov, V. (2014)
Dependency, the Thermoelectric Figure of Merit of a Material Consisting
of Particles on the Parameters of a Material. Journal of Applied Mathematics and Physics, 2, 953-959. doi: 10.4236/jamp.2014.210108.
[1] | Dmitriev, A.V. and Zvyagin, I.P. (2010) Current Trends in the Physics of Thermoelectric Materials. Physics Uspekhi, 53, 789-803. http://dx.doi.org/10.3367/UFNe.0180.201008b.0821 |
[2] |
Snarskii, A.A., Sarychev, A.K.,
Bersudnov, I.V. and Lagarkov, A.N. (2012) Thermoelectric Figure of Merit
of Bulk Nanostructured Composites with Distributed Parameters.
Semiconductors, 46, 659-665. http://dx.doi.org/10.1134/S106378261205020X |
[3] | Casian, A.I. (2006) In: Rowe, D.M., Ed., Thermoelectrics Handbook: Macro to Nano, CRC/Taylor and Francis, Boca Raton, Chapter 36. |
[4] |
Kharlamov, V.F. (2013)
Thermoelectric Figure of Merit of a Material Consisting of Semiconductor
or Metal Particles. Journal of Experimental and Theoretical Physics,
117, 83-88. http://dx.doi.org/10.1134/S106377611306006X |
[5] | Gothard, N., Spowart, J.E. and Tritt, T.M. (2010). Physica Status Solidi (A), 207, 157-164. |
[6] |
Ohita, H. (2007) Thermoelectrics
Based on Strontium Titanate. Materials Today, 10, 44-49. http://dx.doi.org/10.1016/S1369-7021(07)70244-4 |
[7] | Tritt, T.M. and Subramanian, M.A. (2006) Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View. MRS Bulletin, 31, 188-197. http://dx.doi.org/10.1557/mrs2006.44 |
[8] |
Zhu, G.H., Lee, H., Lan, Y.C.,
Wang, X.W., Joshi, G., Wang, D.Z., Yang, J., Vashaee, D., Guilbert, H.,
Pillitteri, A., Dresselhaus, M.S., Chen, G. and Ren, Z.F. (2009)
Increased Phonon Scattering by Nanograins and Point Defects in
Nanostructured Silicon with a Low Concentration of Germanium. Physical
Review Letters, 102, 196803. http://dx.doi.org/10.1103/PhysRevLett.102.196803 |
[9] |
Hishinuma Y., Moyzhes B.Y., et
al. (2001) Refrigeration by Combined Tunneling and Thermionic Emission
in Vacuum: Use of Nanometer Scale Design. Applied Physics Letters, 78,
2572. http://dx.doi.org/10.1063/1.1365944 |
[10] | Bonch-Bruevich, V.L. and Kalashnikov, S.G. (1982) Physics of Semiconductors. VEB, Berlin. eww141007lx |
评论
发表评论