跳至主要内容

Waste Water Treatment in Direct Borohydride Fuel Cell with Bipolar Membrane

Read  full  paper  at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53823#.VNR6LCzQrzE

ABSTRACT
It was established that application of bipolar membrane in a direct borohydride fuel cell (DBFC) with <span "="">H2O2<span "="">co-generation enabled to keep constant pH in catholyte within 2.5 - 3.2 limits, which allowed us to carry out treatment of water polluted by organic compounds in fuel cell catholyte. Treatment of water was carried out by electro-Fenton and photo-electro-Fenton methods. With the view of efficiency, photo-electro-Fenton method of treatment was the most efficient, which enabled to decrease COD of catholytes containing (in each case) phenol, valsaren, 400 g/L dymethoate (BI-58) and valsaciper from 500 ppm to 30, 11, 9 and 3 ppm, respectively after 180 min treatment. By increasing the catholyte temperature from 20℃<span "=""> to<span "=""> 40℃<span "=""> in the same period, phenol<span "=""> COD fell to 5 ppm.
Cite this paper
Nikoleishvili, P. , Tsurtsumia, G. , Kveselava, V. , Gorelishvili, G. , Kurtanidze, R. , Koiava, N. , Kakhniashvili, I. and Sharabidze, D. (2015) Waste Water Treatment in Direct Borohydride Fuel Cell with Bipolar Membrane. Open Journal of Ecology, 5, 22-32. doi: 10.4236/oje.2015.52003.
References
[1]Zepp, R., Faust, B. and Hoign, J. (1992) Hydroxyl Radical Formation in Aqueous Reactions (pH 3 - 8) of Iron(II) with Hydrogen Peroxide: The Photo-Fenton Reaction. Environmental Science Technology, 26, 313-319.
http://dx.doi.org/10.1021/es00026a011
 
[2]Brillas, E., Mur, E. and Casado, J. (1996) Iron(II) Catalysis of the Mineralization of Aniline Using a Carbon-PTFE O2-Fed Cathode. Journal of the Electrochemical Society, 143, 49-53.
http://dx.doi.org/10.1149/1.1836528
 
[3]Brillas, E., Calpe, J. and Casado, J. (2000) Mineralization of 2,4-D by Advanced Oxidation Processes. Water Research, 34, 2253-2262. http://dx.doi.org/10.1016/S0043-1354(99)00396-6
 
[4]Irmak, S., Yavuz, H. and Erbatur, O. (2004) Degradation of 4-Chloro-2-Methylphenol in Aqueous Solution by UV Irradiation in the Presence of Titanium Dioxide. Applied Catalysis B: Environmental, 54, 85-91.
http://dx.doi.org/10.1016/j.apcatb.2004.06.003
 
[5]Brillas, E., Banos, M. and Garrido, J. (2003) Mineralization of Herbicide 3,6-Dichloro-2-Methoxybenzoic Acid in Aqueous Medium by Anodic Oxidation, Electro-Fenton and Photoelectro-Fenton. Electrochimica Acta, 48, 1697-1705.
http://dx.doi.org/10.1016/S0013-4686(03)00142-7
 
[6]Sirés, I., Arias, C., Cabot, P., Centellas, F., Rodríguez, R., Garrido, J. and Brillas, E. (2004) Paracetamol Mineralization by Advanced Electrochemical Oxidation Processes for Wastewater Treatment. Environmental Chemistry, 1, 26-28.
http://dx.doi.org/10.1071/EN04018
 
[7]Sirés, I., Centellas, F., Garrido, J., Rodríguez, R., Arias, C., Cabot, P. and Brillas, E. (2007) Mineralization of Clofibric Acid by Electrochemical Advanced Oxidation Processes Using a Boron-Doped Diamond Anode and Fe2+ and UVA Light as Catalysts. Applied Catalysis B: Environmental, 72, 373-381. http://dx.doi.org/10.1016/j.apcatb.2006.12.002
 
[8]Sirés, I., Arias, C., Cabot, P., Centellas, F., Garrido, J., Rodríguez, R. and Brillas, E. (2007) Degradation of Clofibric Acid in Acidic Aqueous Medium by Electro-Fenton and Photoelectro-Fenton. Chemosphere, 66, 1660-1669.
http://dx.doi.org/10.1016/j.chemosphere.2006.07.039
 
[9]Brillas, E., Banos, M., Skoumal, M., Cabot, P., Garrido, J. and Rodríguez, R. (2007) Degradation of the Herbicide 2,4-DP by Anodic Oxidation, Electro-Fenton and Photoelectro-Fenton Using Platinum and Boron-Doped Diamond Anodes. Chemosphere, 68, 199-209.
http://dx.doi.org/10.1016/j.chemosphere.2007.01.038
 
[10]Flox, C., Garrido, J., Rodríguez, R., Cabot, P., Centellas, F., Arias, C. and Brillas, E. (2007) Mineralization of Herbicide Mecoprop by Photoelectro-Fenton with UVA and Solar Light. Catalysis Today, 129, 29-36.
http://dx.doi.org/10.1016/j.cattod.2007.06.049
 
[11]Guinea, E., Arias, C., Cabot, P., Garrido, J., Rodríguez, R., Centellas, F. and Brillas, E. (2008) Mineralization of Salicylic Acid in Acidic Aqueous Medium by Electrochemical Advanced Oxidation Processes Using Platinum and Boron-Doped Diamond as Anode and Cathodically Generated Hydrogen Peroxide. Water Research, 42, 499-511.
http://dx.doi.org/10.1016/j.watres.2007.07.046
 
[12]Skoumal, M., Arias, C., Cabot, P., Centellas, F., Garrido, J., Rodríguez, R. and Brillas, E. (2008) Mineralization of the Biocide Chloroxylenol by Electrochemical Advanced Oxidation Processes. Chemosphere, 71, 1718-1729.
http://dx.doi.org/10.1016/j.chemosphere.2007.12.029
 
[13]Oller, I., Malato, S., Sánchez-Pérez, J., Gernjak, W., Maldonado, M., Pérez-Estrada, L. and Pulgarin, C. (2007) A Combined Solar Photocatalytic-Biological Field System for the Mineralization of an Industrial Pollutant at Pilot Scale. Catalysis Today, 122, 150-159. http://dx.doi.org/10.1016/j.cattod.2007.01.041
 
[14]Pignatello, J. (1992) Dark and Photoassisted Iron(3+)-Catalyzed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide. Environmental Science & Technology, 26, 944-951.
http://dx.doi.org/10.1021/es00029a012
 
[15]Zuo, Y. and Hoigné, J. (1992) Formation of Hydrogen Peroxide and Depletion of Oxalic Acid in Atmospheric Water by Photolysis of Iron(III)-Oxalato Complexes. Environmental Science & Technology, 26, 1014-1022.
http://dx.doi.org/10.1021/es00029a022
 
[16]Agladze, G., Tsurtsumia, G., Jung, B.I., Kim, J.S. and Gorelishvili, G. (2007) Comparative Study of Hydrogen Peroxide Electro-Generation on Gas-Diffusion Electrodes in Undivided and Membrane Cells. Journal of Applied Electrochemistry, 37, 375-383. http://dx.doi.org/10.1007/s10800-006-9269-x
 
[17]Agladze, G., Tsurtsumia, G., Jung, B.I., Kim, J.S. and Gorelishvili, G. (2007) The “In-Cell” and “Ex-Cell” Fenton Treatment of Phenol, 4-Chlorophenol and Aniline. Journal of Applied Electrochemistry, 37, 385-393.
http://dx.doi.org/10.1007/s10800-006-9268-y
 
[18]Agladze, G., Tsurtsumia, G., Jung, B.I., Kim, J.S. and Gorelishvili, G. (2007) Comparative Study of Chemical and Electrochemical Fenton Treatment of Organic Pollutants in Wastewater. Journal of Applied Electrochemistry, 37, 985-990. http://dx.doi.org/10.1007/s10800-007-9325-1
 
[19]Agladze, G., Nikoleishvili, P., Tsurtsumia, G., Kveselava, V., Gorelishvili, G. and Latsusbaia, R. (2010) Electrosynthesis of Sodium Perborate. ECS Transactions, 25, 345-363.
 
[20]Agladze, G., Nikoleishvili, P., Tsurtsumia, G., Kveselava, V., Gorelishvili, G. and Latsusbaia, R. (2010) DMFC with Hydrogen Peroxide Cogeneration. Journal of the Electrochemical Society, 157, E140-E147.
http://dx.doi.org/10.1149/1.3461161
 
[21]Taylor, R. and Humffray, A. (1975) Electrochemical Studies on Glassy Carbon Electrodes: II. Oxygen Reduction in Solutions of High pH (pH > 10). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 64, 63-84.
http://dx.doi.org/10.1016/S0022-0728(75)80278-6
 
[22]Yang, H.H. and McCreery, R. (2000) Elucidation of the Mechanism of Dioxygen Reduction on Metal-Free Carbon Electrodes. Journal of the Electrochemical Society, 147, 3420-3428.
http://dx.doi.org/10.1149/1.1393915
 
[23]Alcaide, F., Brillas, E., Cabot, P. and Casado, J. (1998) Electrogeneration of Hydroperoxide Ion Using an Alkaline Fuel Cell. Journal of the Electrochemical Society, 145, 3444-3449.
http://dx.doi.org/10.1149/1.1838825
 
[24]Brillas, E., Alcaide, F. and Cabot, P. (2002) A Small-Scale Flow Alkaline Fuel Cell for On-Site Production of Hydrogen Peroxide. Electrochimica Acta, 48, 331-340. http://dx.doi.org/10.1016/S0013-4686(02)00665-5
 
[25]Agladze, G., Nikoleishvili, P., Kveselava, V., Tsurtsumia, G., Gorelishvili, G., Gogoli, D. and Kakhniashvili, I. (2012) A Novel Aluminium-Air Semi-Fuel Cell Operating with Hydrogen Peroxide Co-Generation. Journal of Power Sources, 218, 46-51. http://dx.doi.org/10.1016/j.jpowsour.2012.06.086
 
[26]Wilhelm, F. (2001) Bipolar Membrane Electrodialysis. Twente University Press, Enschede, 221.
 
[27]APHA (1985) Standard Methods for the Examination of Water and Wastewater. 16th Edition, American Public Health Association, Washington DC.
 
[28](2000) Experiment Instruction for Нydro-Genius TM Professional. Вerlin, 16.
 
[29]Brillas, E., Sirés, I. and Oturan, M. (2009) Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109, 6570-6631.
http://dx.doi.org/10.1021/cr900136g
 
[30]Esplugas, S., Gimenez, J., Contreras, S., Pascual, E. and Rodriguez, M. (2002) Comparison of Different Advanced Oxidation Processes for Phenol Degradation. Water Research, 36, 1034-1042.
http://dx.doi.org/10.1016/S0043-1354(01)00301-3
 
[31]Bach, A., Shemer, H. and Semiat, R. (2010) Kinetics of Phenol Mineralization by Fenton-Like Oxidation. Desalination, 264, 188-192. http://dx.doi.org/10.1016/j.desal.2010.04.011                    eww150206lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...