跳至主要内容

Rogue Wave for the Benjamin Ono Equation

Read  full  paper  at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=54039#.VOBOwCzQrzE

Author(s)  
 
ABSTRACT
In the paper, the homoclinic (hateroclinic) breather limit method (HBLM) is applied to seek rogue wave solution of the Benjamin Ono equation. We find that the rational breather wave solution is just a rogue wave solution. This result shows that rogue wave can come from the extreme behavior of the breather solitary wave for (1+1)-dimensional nonlinear wave fields.
Cite this paper
Song, L. , Chen, W. , Xu, Z. and Chen, H. (2015) Rogue Wave for the Benjamin Ono Equation. Advances in Pure Mathematics, 5, 82-87. doi: 10.4236/apm.2015.52010.
 
References
[1]Ablowitz, M.J. and Clarkson, P.A. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511623998
 
[2]Korpel, A. and Banerjee, P. (1984) Heuristic Guide to Nonlinear Dispersive Wave Equation and Soliton-Type Solution. Proceedings of the IEEE, 72, 1109-1130. http://dx.doi.org/10.1109/PROC.1984.12992
 
[3]Fan, E. (2004) The Integrable Systems and The Computer Algebra. Science Press, Beijing.
 
[4]Fu. Z., Liu, S., et al. (2003) The JEFE Method and Periodic Solutions of Two Kinds of Nonlinear Wave Equations. Communications in Nonlinear Science and Numerical Simulation, 8, 67-75.
http://dx.doi.org/10.1016/S1007-5704(02)00082-5
 
[5]Wang, Z., Li, D., et al. (2005) A Method for Constructing Exact Solutions and Application to Benjamin Ono Equation. Chinese Physics, 14, 2158-2163. http://dx.doi.org/10.1088/1009-1963/14/11/003
 
[6]Dai, Z., Huang, J., et al. (2005) Homoclinic Orbits and Periodic Solitons for Boussinesq Equation with Even Constraint. Chaos, Solitons & Fractals, 26, 1189-1194.
http://dx.doi.org/10.1016/j.chaos.2005.02.025
 
[7]Dai, Z., Jiang, M., et al. (2006) Homoclinic Bifurcation for Boussinesq Equation with Even Constraint. Chinese Physics Letters, 23, 1065-1067. http://dx.doi.org/10.1088/0256-307X/23/5/001
 
[8]Dai, Z., Liu, J. and Li, D. (2009) Applications of HTA and EHTA to YTSF Equation. Applied Mathematics and Computation, 207, 360-364. http://dx.doi.org/10.1016/j.amc.2008.10.042
 
[9]Dai, Z., Li, Z., et al. (2008) Exact Homoclinic Wave and Soliton Solutions for the 2D Ginzburg-Landau Equation. Physics Letters A, 372, 3010-3014. http://dx.doi.org/10.1016/j.physleta.2008.01.015
 
[10]Dai, Z., Liu, Z. and Li, D. (2008) Exact Periodic Solitary-Wave Solution for KdV Equation. Chinese Physics Letters, 25, 1531-1533. http://dx.doi.org/10.1088/0256-307X/25/5/003
 
[11]Xu, Z.H., Xian, D.Q. and Chen, H.L. (2010) New Periodic Solitary-Wave Solutions for the Benjamin Ono Equation. Applied Mathematics and Computation, 215, 4439-4442.
http://dx.doi.org/10.1016/j.amc.2009.11.009
 
[12]Ohta, Y. and Yang, J.K. (2012) General High-Order Rogue Waves and Their Dynamics in the Nonlinear Schr?dinger Equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468, 1716-1740.
 
[13]Muller, P., Garrett, C. and Osborne, A. (2005) Rouge Waves. Oceanography, 18, 66-75.
 
[14]Kharif, C., Pelinovsky, E. and Slunyaey, A. (2009) Rogue Waves in the Ocean, Observation, Theories and Modeling. Springer, New York.
 
[15]Akhmediev, N., Ankiewicz, A. and Soto-Crespo, J.M. (2009) Rogue Waves and Rational Solutions of the Nonlinear Schr?dinger Equation. Physical Review E, 80, Article ID: 026601.
http://dx.doi.org/10.1103/PhysRevE.80.026601?
 
[16]Solli, D.R., Ropers, C., Koonath, P. and Jalali, B. (2007) Optical Rogue Waves. Nature, 450, 1054-1057.
http://dx.doi.org/10.1038/nature06402
 
[17]Bludov, V.Y., Konotop, V.V. and Akhmediev, N. (2009) Rogue Waves as Spatial Energy Concentrators in Arrays of Nonlinear Waveguides. Optics Letters, 34, 3015-3017. http://dx.doi.org/10.1364/OL.34.003015
 
[18]Ganshin, A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-Deglin, L.P. and McClintock, P.V.E. (2008) Statistical Properties of Strongly Nonlinear Waves within a Resonator. Physical Review Letters, 101, Article ID: 065303.
http://dx.doi.org/10.1103/PhysRevLett.101.065303
 
[19]Bludov, V.Y., Konotop, V.V. and Akhmediev, N. (2009) Matter Rogue Waves. Physical Review A, 80, Article ID: 033610. http://dx.doi.org/10.1103/PhysRevA.80.033610
 
[20]Montina, A., Bortolozzo, U., Residori, S. and Arecchi, F.T. (2013) Rogue Waves and Their Generating Mechanisms in Different Physical Contexts. Physics Reports, 528, 47-89.
http://dx.doi.org/10.1016/j.physrep.2013.03.001
 
[21]Solli, D.R., Ropers, C. and Jalali, B. (2008) Active Control of Optical Rogue Waves for Stimulated Supercontinuum Generation. Physical Review Letters, 101, Article ID: 233902.
http://dx.doi.org/10.1103/PhysRevLett.101.233902
 
[22]Yan, Z.Y. (2011) Vector Financial Rogue Waves. Physics Letters A, 375, 4274-4279.
http://dx.doi.org/10.1016/j.physleta.2011.09.026
 
[23]Xu, Z.H., Chen, H.L. and Dai, Z.D. (2014) Rogue Wave for the (2+1)-Dimensional Kadomtsev-Petviashvili Equation. Applied Mathematics Letters, 37, 34-38.
http://dx.doi.org/10.1016/j.aml.2014.05.005
 
[24]Hirota, R. (1985) Fundamental Properties of the Binary Operators in Soliton Theory and Their Generalizartion. In: Takeno, S., Ed., Dynamical Problem in Soliton Systems, Springer Series in Synergetiecs, Springer, Berlin, 42-49.
 
[25]Dai, Z.D., Liu, J. and Li, D.L. (2009) Applications of HTA and EHTA to YTSF Equation. Applied Mathematics and Computation, 207, 360-364. http://dx.doi.org/10.1016/j.amc.2008.10.042              eww150215lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...