Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=54039#.VOBOwCzQrzE
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=54039#.VOBOwCzQrzE
Affiliation(s)
1School of Science, Southwest University of Science and Technology, Mianyang, China.
2Applied Technology College, Southwest University of Science and Technology, Mianyang, China.
2Applied Technology College, Southwest University of Science and Technology, Mianyang, China.
ABSTRACT
In
the paper, the homoclinic (hateroclinic) breather limit method (HBLM)
is applied to seek rogue wave solution of the Benjamin Ono equation. We
find that the rational breather wave solution is just a rogue wave
solution. This result shows that rogue wave can come from the extreme
behavior of the breather solitary wave for (1+1)-dimensional nonlinear
wave fields.
KEYWORDS
Benjamin Ono Equation, Extended Homoclinic Test Method, Homoclinic (Hateroclinic) Breather Limit Method, Rogue Wave Solution
Cite this paper
References
Song, L. , Chen, W. , Xu, Z. and Chen, H. (2015) Rogue Wave for the Benjamin Ono Equation. Advances in Pure Mathematics, 5, 82-87. doi: 10.4236/apm.2015.52010.
[1] | Ablowitz, M.J. and Clarkson, P.A. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511623998 |
[2] | Korpel, A. and Banerjee, P. (1984) Heuristic Guide to Nonlinear Dispersive Wave Equation and Soliton-Type Solution. Proceedings of the IEEE, 72, 1109-1130. http://dx.doi.org/10.1109/PROC.1984.12992 |
[3] | Fan, E. (2004) The Integrable Systems and The Computer Algebra. Science Press, Beijing. |
[4] | Fu.
Z., Liu, S., et al. (2003) The JEFE Method and Periodic Solutions of
Two Kinds of Nonlinear Wave Equations. Communications in Nonlinear
Science and Numerical Simulation, 8, 67-75. http://dx.doi.org/10.1016/S1007-5704(02)00082-5 |
[5] | Wang, Z., Li, D., et al. (2005) A Method for Constructing Exact Solutions and Application to Benjamin Ono Equation. Chinese Physics, 14, 2158-2163. http://dx.doi.org/10.1088/1009-1963/14/11/003 |
[6] | Dai,
Z., Huang, J., et al. (2005) Homoclinic Orbits and Periodic Solitons
for Boussinesq Equation with Even Constraint. Chaos, Solitons &
Fractals, 26, 1189-1194. http://dx.doi.org/10.1016/j.chaos.2005.02.025 |
[7] | Dai, Z., Jiang, M., et al. (2006) Homoclinic Bifurcation for Boussinesq Equation with Even Constraint. Chinese Physics Letters, 23, 1065-1067. http://dx.doi.org/10.1088/0256-307X/23/5/001 |
[8] | Dai, Z., Liu, J. and Li, D. (2009) Applications of HTA and EHTA to YTSF Equation. Applied Mathematics and Computation, 207, 360-364. http://dx.doi.org/10.1016/j.amc.2008.10.042 |
[9] | Dai, Z., Li, Z., et al. (2008) Exact Homoclinic Wave and Soliton Solutions for the 2D Ginzburg-Landau Equation. Physics Letters A, 372, 3010-3014. http://dx.doi.org/10.1016/j.physleta.2008.01.015 |
[10] | Dai, Z., Liu, Z. and Li, D. (2008) Exact Periodic Solitary-Wave Solution for KdV Equation. Chinese Physics Letters, 25, 1531-1533. http://dx.doi.org/10.1088/0256-307X/25/5/003 |
[11] | Xu,
Z.H., Xian, D.Q. and Chen, H.L. (2010) New Periodic Solitary-Wave
Solutions for the Benjamin Ono Equation. Applied Mathematics and
Computation, 215, 4439-4442. http://dx.doi.org/10.1016/j.amc.2009.11.009 |
[12] | Ohta, Y. and Yang, J.K. (2012) General High-Order Rogue Waves and Their Dynamics in the Nonlinear Schr?dinger Equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468, 1716-1740. |
[13] | Muller, P., Garrett, C. and Osborne, A. (2005) Rouge Waves. Oceanography, 18, 66-75. |
[14] | Kharif, C., Pelinovsky, E. and Slunyaey, A. (2009) Rogue Waves in the Ocean, Observation, Theories and Modeling. Springer, New York. |
[15] | Akhmediev,
N., Ankiewicz, A. and Soto-Crespo, J.M. (2009) Rogue Waves and Rational
Solutions of the Nonlinear Schr?dinger Equation. Physical Review E, 80,
Article ID: 026601. http://dx.doi.org/10.1103/PhysRevE.80.026601? |
[16] | Solli, D.R., Ropers, C., Koonath, P. and Jalali, B. (2007) Optical Rogue Waves. Nature, 450, 1054-1057. http://dx.doi.org/10.1038/nature06402 |
[17] | Bludov, V.Y., Konotop, V.V. and Akhmediev, N. (2009) Rogue Waves as Spatial Energy Concentrators in Arrays of Nonlinear Waveguides. Optics Letters, 34, 3015-3017. http://dx.doi.org/10.1364/OL.34.003015 |
[18] | Ganshin,
A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-Deglin, L.P. and McClintock,
P.V.E. (2008) Statistical Properties of Strongly Nonlinear Waves within
a Resonator. Physical Review Letters, 101, Article ID: 065303. http://dx.doi.org/10.1103/PhysRevLett.101.065303 |
[19] | Bludov, V.Y., Konotop, V.V. and Akhmediev, N. (2009) Matter Rogue Waves. Physical Review A, 80, Article ID: 033610. http://dx.doi.org/10.1103/PhysRevA.80.033610 |
[20] | Montina,
A., Bortolozzo, U., Residori, S. and Arecchi, F.T. (2013) Rogue Waves
and Their Generating Mechanisms in Different Physical Contexts. Physics
Reports, 528, 47-89. http://dx.doi.org/10.1016/j.physrep.2013.03.001 |
[21] | Solli,
D.R., Ropers, C. and Jalali, B. (2008) Active Control of Optical Rogue
Waves for Stimulated Supercontinuum Generation. Physical Review Letters,
101, Article ID: 233902. http://dx.doi.org/10.1103/PhysRevLett.101.233902 |
[22] | Yan, Z.Y. (2011) Vector Financial Rogue Waves. Physics Letters A, 375, 4274-4279. http://dx.doi.org/10.1016/j.physleta.2011.09.026 |
[23] | Xu,
Z.H., Chen, H.L. and Dai, Z.D. (2014) Rogue Wave for the
(2+1)-Dimensional Kadomtsev-Petviashvili Equation. Applied Mathematics
Letters, 37, 34-38. http://dx.doi.org/10.1016/j.aml.2014.05.005 |
[24] | Hirota, R. (1985) Fundamental Properties of the Binary Operators in Soliton Theory and Their Generalizartion. In: Takeno, S., Ed., Dynamical Problem in Soliton Systems, Springer Series in Synergetiecs, Springer, Berlin, 42-49. |
[25] | Dai, Z.D., Liu, J. and Li, D.L. (2009) Applications of HTA and EHTA to YTSF Equation. Applied Mathematics and Computation, 207, 360-364. http://dx.doi.org/10.1016/j.amc.2008.10.042 eww150215lx |
评论
发表评论