跳至主要内容

Microarray Analysis of Transcriptomic Response of Escherichia coli to Nonthermal Plasma-Treated PBS Solution

Read  full  paper  at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53711#.VNBuDyzQrzE

ABSTRACT
We developed a technique of generating nonthermal atmospheric plasma-activated solution that had broad-spectrum antibacterial properties. Plasma-activated phosphate-buffered saline (PBS) causes rapid inactivation of bacteria following generation oxidative stress. However, dose optimization requires understanding of cellular mechanisms. The objective of this study was to explore genome-wise response to develop gene expression profile of Escherichia coli using DNA microarray following exposure to plasma-activated PBS solution. Upon exposure to plasma-treated PBS solution, E. coli cells had differentially expressed genes involved in oxidative stress, and cell envelope and membrane associated porin and transporters. The genes involved in house-keeping and metabolism, energy generation, motility and virulence were conversely downregulated. This is the first report which demonstrates a severe oxidative stress induced in E. coli cells in response to an exposure to nonequilibrium nonthermal dielectric-barrier discharge plasma-activated PBS solution, and the genes that are responsive to reactive oxygen species appeared to play a role in cellular stress. Such studies are important to identify targets of inactivation, and to understand plasma-treated solution and bacterial cell interactions.
 
Cite this paper
Joshi, S. , Yost, A. , Joshi, S. , Addya, S. , Ehrlich, G. and Brooks, A. (2015) Microarray Analysis of Transcriptomic Response of Escherichia coli to Nonthermal Plasma-Treated PBS Solution. Advances in Bioscience and Biotechnology, 6, 49-62. doi: 10.4236/abb.2015.62006.
 
References
[1]Burts, M.L., Alexeff, I., Meek, E.T. and McCullers, J.A. (2009) Use of Atmospheric Non-Thermal Plasma as a Disinfectant for Objects Contaminated with Methicillin-Resistant Staphylococcus aureus. American Journal of Infection Control, 37, 729-733.
http://dx.doi.org/10.1016/j.ajic.2009.03.010
 
[2]Kvam, E., Davis, B., Mondello, F. and Garner, A.L. (2012) Nonthermal Atmospheric Plasma Rapidly Disinfects Multidrug-Resistant Microbes by Inducing Cell Surface Damage. Antimicrobial Agents and Chemotherapy, 56, 2028-2036.
http://dx.doi.org/10.1128/AAC.05642-11
 
[3]Joshi, S.G., Cooper, M., Yost, A., Paff, M., Ercan, U.K., Fridman, G., Friedman, G., Fridman, A. and Brooks, A.D. (2011) Nonthermal Dielec-tric-Barrier Discharge Plasma-Induced Inactivation Involves Oxidative DNA Damage and Membrane Lipid Peroxidation in Escherichia coli. Antimicrobial Agents and Chemotherapy, 55, 1053-1062.
http://dx.doi.org/10.1128/AAC.01002-10
 
[4]Cooper, M., Fridman, G., Fridman, A. and Joshi, S.G. (2010) Biological Responses of Bacillus stratosphericus to Floating Electrode-Dielectric Barrier Discharge Plasma Treatment. Journal of Applied Microbiology, 109, 2039-2048.
http://dx.doi.org/10.1111/j.1365-2672.2010.04834.x
 
[5]Desmet, T., Morent, R., De Geyter, N., Leys, C., Schacht, E. and Dubruel, P. (2009) Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules, 10, 2351-2378.
http://dx.doi.org/10.1021/bm900186s
 
[6]Sharma, A., Collins, G. and Pruden, A. (2009) Differential Gene Expression in Escherichia coli Following Exposure to Nonthermal Atmospheric Pressure Plasma. Journal of Applied Microbiology, 107, 1440-1449.
http://dx.doi.org/10.1111/j.1365-2672.2009.04323.x
 
[7]Ercan, U.K., Wang, H., Ji, H.F., Fridman, G., Brooks, A.D. and Joshi, S.G. (2013) Nonequilibrium Plasma-Activated Antimicrobial Solutions Are Broad-Spectrum and Retain Their Efficacies for Extended Period of Time. Plasma Processes and Polymers, 10, 544-555.
http://dx.doi.org/10.1002/ppap.201200104
 
[8]Kojtari, A., Ercan, U.K., Smith, J., Friedman, G., Sensenig, R.B., Tyagi, S., Joshi, S.G., Ji, H.-F. and Brooks, A.D. (2013) Chemistry for Antimicrobial Properties of Water Treated with Non-Equilibrium Plasma. Nanomedicine and Biotherpaeutic Discovery, 4, 1-5.
 
[9]Imlay, J.A. (2013) The Molecular Mechanisms and Physiological Consequences of Oxidative Stress: Lessons from a Model Bacterium. Nature Reviews Microbiology, 11, 443-454.
http://dx.doi.org/10.1038/nrmicro3032
 
[10]Eisen, M.B. and Brown, P.O. (1999) DNA Arrays for Analysis of Gene Expression. Methods in Enzymology, 303, 179-205.
http://dx.doi.org/10.1016/S0076-6879(99)03014-1
 
[11]Joshi, S.G., Paff, M., Friedman, G., Fridman, G., Fridman, A. and Brooks, A.D. (2010) Control of Methicillin-Resistant Staphylococcus aureus in Planktonic Form and Biofilms: A Biocidal Efficacy Study of Nonthermal Dielectric-Barrier Discharge Plasma. American Journal of Infection Control, 38, 293-301.
http://dx.doi.org/10.1016/j.ajic.2009.11.002
 
[12]Perumal Samy, R., Pachiappan, A., Gopalakrishnakone, P., Thwin, M.M., Hian, Y.E., Chow, V.T., Bow, H. and Weng, J.T. (2006) In Vitro Antimicrobial Activity of Natural Toxins and Animal Venoms Tested against Burkholderia pseudomallei. BMC Infectious Diseases, 6, 100.
http://dx.doi.org/10.1186/1471-2334-6-100
 
[13]Vercaigne, L.M., Sitar, D.S., Penner, S.B., Bernstein, K., Wang, G.Q. and Burczynski, F.J. (2000) Antibiotic-Heparin Lock: In Vitro Antibiotic Stability Combined with Heparin in a Central Venous Catheter. Pharmacotherapy, 20, 394-399.
http://dx.doi.org/10.1592/phco.20.5.394.35063
 
[14]Sobota, J.M., Gu, M. and Imlay, J.A. (2014) Intracellular Hydrogen Peroxide and Superoxide Poison 3-Deoxy-D-Arabinoheptulosonate 7-Phosphate Synthase, the First Committed Enzyme in the Aromatic Biosynthetic Pathway of Escherichia coli. Journal of Bacteriology, 196, 1980-1991.
http://dx.doi.org/10.1128/JB.01573-14
 
[15]Booth, J.A., Thomassen, G.O., Rowe, A.D., Weel-Sneve, R., Lagesen, K., Kristiansen, K.I., Bjoras, M., Rognes, T. and Lindvall, J.M. (2013) Tiling Array Study of MNNG Treated Escherichia coli Reveals a Widespread Transcriptional Response. Scientific Reports, 3, 3053.
http://dx.doi.org/10.1038/srep03053
 
[16]Rostas, K., Morton, S.J., Picksley, S.M. and Lloyd, R.G. (1987) Nucleotide Sequence and LexA Regulation of the Escherichia coli recN Gene. Nucleic Acids Research, 15, 5041-5049.
http://dx.doi.org/10.1093/nar/15.13.5041
 
[17]Li, Z. and Demple, B. (1994) SoxS, an Activator of Superoxide Stress Genes in Escherichia coli. Purification and Interaction with DNA. The Journal of Biological Chemistry, 269, 18371-18377.
 
[18]Imlay, J.A. (2008) Cellular Defenses against Superoxide and Hydrogen Peroxide. Annual Review of Biochemistry, 77, 755-776.
http://dx.doi.org/10.1146/annurev.biochem.77.061606.161055
 
[19]Jozefczuk, S., Klie, S., Catchpole, G., Szymanski, J., Cuadros-Inostroza, A., Steinhauser, D., Selbig, J. and Willmitzer, L. (2010) Metabolomic and Transcriptomic Stress Response of Escherichia coli. Molecular Systems Biology, 6, 364.
http://dx.doi.org/10.1038/msb.2010.18
 
[20]Zuber, P. (2009) Management of Oxidative Stress in Bacillus. Annual Review of Microbiology, 63, 575-597.
http://dx.doi.org/10.1146/annurev.micro.091208.073241
 
[21]Boyd, J.M., Lewis, J.A., Escalante-Semerena, J.C. and Downs, D.M. (2008) Salmonella enterica Requires ApbC Function for Growth on Tri-carballylate: Evidence of Functional Redundancy between ApbC and IscU. Journal of Bacteriology, 190, 4596-4602.
http://dx.doi.org/10.1128/JB.00262-08
 
[22]Tsaousis, A.D., Ollagnier de Choudens, S., Gentekaki, E., Long, S., Gaston, D., Stechmann, A., Vinella, D., Py, B., Fontecave, M., Barras, F., Lukes, J. and Roger, A.J. (2012) Evolution of Fe/S Cluster Biogenesis in the Anaerobic Parasite Blastocystis. Proceedings of the National Academy of Sciences of the United States of America, 109, 10426-10431.
http://dx.doi.org/10.1073/pnas.1116067109
 
[23]Lee, K.C., Yeo, W.S. and Roe, J.H. (2008) Oxidant-Responsive Induction of the Suf Operon, Encoding a Fe-S Assembly System, through Fur and IscR in Escherichia coli. Journal of Bacteriology, 190, 8244-8247.
http://dx.doi.org/10.1128/JB.01161-08
 
[24]Kullik, I., Stevens, J., Toledano, M.B. and Storz, G. (1995) Mutational Analysis of the Redox-Sensitive Transcriptional Regulator OxyR: Regions Important for DNA Binding and Multimerization. Journal of Bacteriology, 177, 1285-1291.
 
[25]Kullik, I., Toledano, M.B., Tartaglia, L.A. and Storz, G. (1995) Mutational Analysis of the Redox-Sensitive Transcriptional Regulator OxyR: Regions Important for Oxidation and Transcriptional Activation. Journal of Bacteriology, 177, 1275-1284.
 
[26]Luo, Y., Henle, E.S., Gassmann, W. and Linn, S. (1996) Oxidative Damage to DNA Constituents by Iron-Mediated Fenton Reactions. The Deoxyguanosine Family. The Journal of Biological Chemistry, 271, 21177-21186.
http://dx.doi.org/10.1074/jbc.271.35.21177
 
[27]Andrews, S.C., Robinson, A.K. and Rodriguez-Quinones, F. (2003) Bacterial Iron Homeostasis. FEMS Microbiology Reviews, 27, 215-237.
http://dx.doi.org/10.1016/S0168-6445(03)00055-X
 
[28]Liu, I.F., Annamalai, T., Sutherland, J.H. and Tse-Dinh, Y.C. (2009) Hydroxyl Radicals Are Involved in Cell Killing by the Bacterial Topoisomerase I Cleavage Complex. Journal of Bacteriology, 191, 5315-5319.
http://dx.doi.org/10.1128/JB.00559-09
 
[29]Houry, A., Briandet, R., Aymerich, S. and Gohar, M. (2010) Involvement of Motility and Flagella in Bacillus cereus Biofilm Formation. Microbiology, 156, 1009-1018.
http://dx.doi.org/10.1099/mic.0.034827-0
 
[30]Lemke, J.J., Durfee, T. and Gourse, R.L. (2009) DksA and ppGpp Directly Regulate Transcription of the Escherichia coli Flagellar Cascade. Molecular Microbiology, 74, 1368-1379.
http://dx.doi.org/10.1111/j.1365-2958.2009.06939.x
 
[31]Sabri, M., Leveille, S. and Dozois, C.M. (2006) A SitABCD Homologue from an Avian Pathogenic Escherichia coli Strain Mediates Transport of Iron and Manganese and Resistance to Hydrogen Peroxide. Microbiology, 152, 745-758.
http://dx.doi.org/10.1099/mic.0.28682-0                                                          eww150203lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...