Mechanisms Underlying the Antifatigue Effects of the Mycelium Extract of Cordyceps (Paecilomyces hepiali, CBG-CS-2) in Mice in the Forced Swimming Test
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=54102#.VO17BizQrzE
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=54102#.VO17BizQrzE
Author(s)
Soo-Wan Chae1,2, Fusako Mitsunaga3,4, Su-Jin Jung2, Ki-Chan Ha5, Hong-Sig Sin6, Seung-Hwan Jang6, Shin Nakamura3,4*
Affiliation(s)
1Department of Pharmacology, Chonbuk National University Medical School, Jeonju-si, Republic of Korea.
2Clinical Trial Center for Functional Foods (CTCF2), Chonbuk National University Hospital, Jeonju-si, Republic of Korea.
3Intelligence and Technology Lab Inc., Kaizu, Japan.
4NPO Primate Agora, Inuyama, Japan.
5Healthcare Claims & Management Inc., Jeonju-si, Republic of Korea.
6Chebigen Inc., Jeonju-si, Republic of Korea.
2Clinical Trial Center for Functional Foods (CTCF2), Chonbuk National University Hospital, Jeonju-si, Republic of Korea.
3Intelligence and Technology Lab Inc., Kaizu, Japan.
4NPO Primate Agora, Inuyama, Japan.
5Healthcare Claims & Management Inc., Jeonju-si, Republic of Korea.
6Chebigen Inc., Jeonju-si, Republic of Korea.
ABSTRACT
Cordyceps (CS) is used as an alternative medicine and functional food. We examined in vivo
mechanisms underlying the antifatigue effects of the cultured mycelium
extract of CS (CS extract) in forced swimming mice, a fatigue model that
is induced by muscle exercise. Animals orally administered with CS
extract significantly extended the loaded forced-swimming time,
indicating its antifatigue effects. CS extract modulated the increased
levels of blood IL-6 that was induced by forced swimming. CS extract
protected the forced swimming-induced increase in NKp46 expression of
splenic NK cells, suggesting regulation of fatigue-elicited
hyper-reactivity by activated NK cells. By DNA microarray analysis of
the quadriceps femoris muscle, it was uncovered that CS extract
prevented the forced swimming-mediated upregulation of the expression of
5 genes associating with muscular inflammation (Ccl6, Ccl8, and Wfdc17) and muscle regeneration (Sfrp4 and Nfil3),
whereas it regulated the downregulation in the expression of Svs5
participating in actin binding. CS extract exhibits the antifatigue
effects through preventing IL-6 accumulation in blood, regulating NK
cell activation in the spleen, and alleviating altered expression of
genes related to inflammation, regeneration, and actin binding in the
local muscle. Thus, CS extract is an effective functional food for
preventing fatigue.
Cite this paper
References
Chae,
S. , Mitsunaga, F. , Jung, S. , Ha, K. , Sin, H. , Jang, S. and
Nakamura, S. (2015) Mechanisms Underlying the Antifatigue Effects of the
Mycelium Extract of Cordyceps (Paecilomyces hepiali, CBG-CS-2) in Mice in the Forced Swimming Test. Food and Nutrition Sciences, 6, 287-298. doi: 10.4236/fns.2015.62029.
[1] | Gandevia, S.C. (2001) Spinal and Supraspinal Factors in Human Muscle Fatigue. Physiological Reviews, 81, 17251789. |
[2] | Bogdanis, G.C. (2012) Effect of Physical Activity and Inactivity on Muscle Fatigue. Frontiers in Physiology, 3, 142. http://dx.doi.org/10.3389/fphys.2012.00142 |
[3] | Finsterer, J. (2012) Biomarkers of Peripheral Muscle Fatigue during Exercise. BMC Musculoskeletal Disorders, 13, 218. http://dx.doi.org/10.1186/1471-2474-13-218 |
[4] | Ren,
J., Zhao, M., Wang, H., Cui, C. and You, L. (2011) Effects of
Supplementation with Grass Carp Protein versus Peptide on Swimming
Endurance in Mice. Nutrition, 27, 789-795. http://dx.doi.org/10.1016/j.nut.2010.08.020 |
[5] | Shao, J.T., Wang, M.Y. and Zheng, L.B. (2013) Antifatigue Effect of Gracilaria eucheumoides in Mice. Experimental and Therapeutic Medicine, 6, 1512-1516. |
[6] | Paterson, R.R. (2008) Cordyceps: A Traditional Chinese Medicine and another Fungal Therapeutic Biofactory? Phytochemistry, 69, 1469-1495. http://dx.doi.org/10.1016/j.phytochem.2008.01.027 |
[7] | Zhou, X., Gong, Z., Su, Y., Lin, J. and Tang, K. (2009) Cordyceps
Fungi: Natural Products, Pharmacological Functions and Developmental
Products. The Journal of Pharmacy and Pharmacology, 61, 279-291. http://dx.doi.org/10.1211/jpp.61.03.0002 |
[8] | Shin, S., Kwon, J., Lee, S., Kong, H., Lee, S., Lee, C.K., et al. (2010) Immunostimulatory Effects of Cordyceps militaris on Macrophages through the Enhanced Production of Cytokines via the Activation of NF-κB. Immune Network, 10, 55-63. http://dx.doi.org/10.4110/in.2010.10.2.55 |
[9] | Li, S.P., Yang, F.Q. and Tsim, K.W.K. (2006) Quality Control of Cordyceps sinensis, a Valued Traditional Chinese Medicine. Journal of Pharmaceutical and Biomedical Analysis, 41, 1571-1584. http://dx.doi.org/10.1016/j.jpba.2006.01.046 |
[10] | Yue, K., Ye, M., Zhou, Z., Sun, W. and Lin, X. (2013) The genus Cordyceps: A Chemical and Pharmacological Review. The Journal of Pharmacy and Pharmacology, 65, 474-493. http://dx.doi.org/10.1111/j.2042-7158.2012.01601.x |
[11] | Kim, H.O. and Yun, J.W. (2005) A Comparative Study on the Production of Exopolysaccharides between Two Entomopathogenic Fungi Cordyceps militaris and Cordyceps sinensis in Submerged Mycelial Cultures. Journal of Applied Microbiology, 99, 728-738. http://dx.doi.org/10.1111/j.1365-2672.2005.02682.x |
[12] | Xu,
C.P., Sinha, J., Bae, J.T., Kim, S.W. and Yun, J.W. (2006) Optimization
of Physical Parameters for Exo-Biopolymer Production in Submerged
Mycelial Cultures of Two Entomopathogenic Fungi Paecilomyces japonica
and Paecilomyces tenuipes. Letters in Applied Microbiology, 42, 501-506.
http://dx.doi.org/10.1111/j.1472-765X.2006.01884.x |
[13] | Lo, H.C., Hsu, T.H., Tu, S.T. and Lin, K.C. (2006) Anti-Hyperglycemic Activity of Natural and Fermented Cordyceps
sinensis in Rats with Diabetes Induced by Nicotinamide and
Streptozotocin. The American Journal of Chinese Medicine, 34, 819-832. http://dx.doi.org/10.1142/S0192415X06004314 |
[14] | Xiao, J.H., Li, Y., Xiao, Y. and Zhong, J.J. (2013) Advance and Prospect of Studies on Bioactivity and Mechanism of Cordyceps Fungi. Zhongguo Zhong Yao Za Zhi, 38, 640-647. |
[15] | Yan, W., Li, T., Lao, J., Song, B. and Shen, Y. (2013) Anti-Fatigue Property of Cordyceps guangdongensis and the Underlying Mechanisms. Pharmaceutical Biology, 51, 614-620. http://dx.doi.org/10.3109/13880209.2012.760103 |
[16] | Koh,
J.H., Kim, K.M., Kim, J.M., Song, J.C. and Suh, H.J. (2003) Antifatigue
and Antistress Effect of the Hot-Water Fraction from Mycelia of Cordyceps sinensis. Biological and Pharmaceutical Bulletin, 26, 691-694. http://dx.doi.org/10.1248/bpb.26.691 |
[17] | Kumar, R., Negi, P.S., Singh, B., Ilavazhagan, G., Bhargava, K. and Sethy, N.K. (2011) Cordyceps
sinensis Promotes Exercise Endurance Capacity of Rats by Activating
Skeletal Muscle Metabolic Regulators. Journal of Ethnopharmacology, 136,
260-266. http://dx.doi.org/10.1016/j.jep.2011.04.040 |
[18] | Jung,
K.A., Han, D., Kwon, E.K., Lee, C.H. and Kim, Y.E. (2007) Antifatigue
Effect of Rubus coreanus Miquel Extract in Mice. Journal of Medicinal
Food, 10, 689-693. http://dx.doi.org/10.1089/jmf.2006.006 |
[19] | Zhang,
X.L., Ren, F., Huang, W., Ding, R.T., Zhou, Q.S. and Liu, X.W. (2010)
Anti-Fatigue Activity of Extracts of Stem Bark from Acanthopanax
senticosus. Molecules, 16, 28-37. http://dx.doi.org/10.3390/molecules16010028 |
[20] | Jeong, A.R., Nakamura, S. and Mitsunaga, F. (2008) Gene Expression Profile of Th1 and Th2 Cytokines and Their Receptors in Human and Nonhuman Primates. Journal of Medical Primatology, 37, 290-296. |
[21] | Shippy,
R., Fulmer-Smentek, S., Jensen, R.V., Jones, W.D., Wolber, P.K.,
Johnson, C.D., et al. (2006) Using RNA Sample Titrations to Assess
Microarray Platform Performance and Normalization Techniques. Nature
Biotechnology, 24, 1123-1131. http://dx.doi.org/10.1038/nbt1241 |
[22] | Gabrielsson,
B.G., Olofsson, L.E., Sjogren, A., Jernas, M., Elander, A., Lonn, M.,
et al. (2005) Evaluation of Reference Genes for Studies of Gene
Expression in Human Adipose Tissue. Obesity Research, 13, 649-652. http://dx.doi.org/10.1038/oby.2005.72 |
[23] | Maes,
M., Twisk, F.N., Kubera, M. and Ringel, K. (2012) Evidence for
Inflammation and Activation of Cell-Mediated Immunity in Myalgic
Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Increased
Interleukin-1, Tumor Necrosis Factor-α, PMN-Elastase, Lysozyme and
Neopterin. Journal of Affective Disorders, 136, 933-939. http://dx.doi.org/10.1016/j.jad.2011.09.004 |
[24] | Curriu,
M., Carrillo, J., Massanella, M., Rigau, J., Alegre, J., Puig, J., et
al. (2013) Screening NK-, Band T-Cell Phenotype and Function in Patients
Suffering from Chronic Fatigue Syndrome. Journal of Translational
Medicine, 11, 68. http://dx.doi.org/10.1186/1479-5876-11-68 |
[25] | Febbraio,
M.A. and Pedersen, B.K. (2005) Contraction-Induced Myokine Production
and Release: Is Skeletal Muscle an Endocrine Organ? Exercise & Sport
Sciences Reviews, 33, 114-119. http://dx.doi.org/10.1097/00003677-200507000-00003 |
[26] | Pedersen, B.K. (2007) IL-6 Signaling in Exercise and Disease. Biochemical Society Transactions, 35, 1295-1297. http://dx.doi.org/10.1042/BST0351295 |
[27] | Moretta,
A., Bottino, C., Mingari, M.C., Biassoni, R. and Moretta, L. (2002)
What Is a Natural Killer Cell? Nature Immunology, 3, 6-8. http://dx.doi.org/10.1038/ni0102-6 |
[28] | Degli-Esposti,
M.A. and Smyth, M.J. (2005) Close Encounters of Different Kinds:
Dendritic Cells and NK Cells Take Centre Stage. Nature Reviews
Immunology, 5, 112-124. http://dx.doi.org/10.1038/nri1549 |
[29] | Stewart,
C.A., Vivier, E. and Colonna, M. (2006) Strategies of Natural Killer
Cell Recognition and Signaling. Current Topics in Microbiology and
Immunology, 298, 1-21. http://dx.doi.org/10.1007/3-540-27743-9_1 |
[30] | Mandelboim, O. and Porgador, A. (2001) NKp46. The International Journal of Biochemistry & Cell Biology, 33, 11471150. http://dx.doi.org/10.1016/S1357-2725(01)00078-4 |
[31] | Vankayalapati,
R., Garg, A., Porgador, A., Griffith, D.E., Klucar, P., Safi, H., et
al. (2005) Role of NK Cell-Activating Receptors and Their Ligands in the
Lysis of Mononuclear Phagocytes Infected with an Intracellular
Bacterium. Journal of Immunology, 175, 4611-4617. http://dx.doi.org/10.4049/jimmunol.175.7.4611 |
[32] | Jonsdottir,
I.H. (2000) Exercise Immunology: Neuroendocrine Regulation of NK-Cells.
International Journal of Sports Medicine, 21, 20-23. http://dx.doi.org/10.1055/s-2000-1447 |
[33] | Wang,
J.S. and Weng, T.P. (2011) Hypoxic Exercise Training Promotes
Antitumour Cytotoxicity of Natural Killer Cells in Young Men. Clinical
Science (London), 121, 343-353. http://dx.doi.org/10.1042/CS20110032 |
[34] | Gur,
C., Porgador, A., Elboim, M., Gazit, R., Mizrahi, S., Stern-Ginossar,
N., et al. (2010) The Activating Receptor NKp46 Is Essential for the
Development of Type 1 Diabetes. Nature Immunology, 11, 121-128. http://dx.doi.org/10.1038/ni.1834 |
[35] | Knorr,
M., Münzel, T. and Wenzel, P. (2014) Interplay of NK Cells and
Monocytes in Vascular Inflammation and Myocardial Infarction. Frontiers
in Physiology, 5, 295. http://dx.doi.org/10.3389/fphys.2014.00295 |
[36] | Gan,
Y., Liu, Q., Wu, W., Yin, J.X., Bai, X.F., Shen, R., et al. (2014)
Ischemic Neurons Recruit Natural Killer Cells that Accelerate Brain
Infarction. Proceedings of the National Academy of Sciences of the
United States of America, 111, 2704-2709. http://dx.doi.org/10.1073/pnas.1315943111 |
[37] | Porter,
J.D., Guo, W., Merriam, A.P., Khanna, S., Cheng, G., Zhou, X., et al.
(2003) Persistent Over-Expression of Specific CC Class Chemokines
Correlates with Macrophage and T-Cell Recruitment in mdx Skeletal
Muscle. Neuromuscular Disorders, 13, 223-235. http://dx.doi.org/10.1016/s0960-8966(02)00242-0 |
[38] | Henningsen,
J., Pedersen, B.K. and Kratchmarova, I. (2011) Quantitative Analysis of
the Secretion of the MCP Family of Chemokines by Muscle Cells.
Molecular BioSystems, 7, 311-321. http://dx.doi.org/10.1039/c0mb00209g |
[39] | Ferreira,
Z., Seixas, S., Andrés, A.M., Kretzschmar, W.W., Mullikin, J.C.,
Cherukuri, P.F., et al. (2013) Reproduction and Immunity-Driven Natural
Selection in the Human WFDC Locus. Molecular Biology and Evolution, 30,
938-950. http://dx.doi.org/10.1093/molbev/mss329 |
[40] | Zhao, P. and Hoffman, E.P. (2004) Embryonic Myogenesis Pathways in Muscle Regeneration. Developmental Dynamics, 229, 380-392. http://dx.doi.org/10.1002/dvdy.10457 |
[41] | Tamboli,
R.A., Hajri, T., Jiang, A., Marks-Shulman, P.A., Williams, D.B.,
Clements, R.H., et al. (2011) Reduction in Inflammatory Gene Expression
in Skeletal Muscle from Roux-en-Y Gastric Bypass Patients Randomized to
Omentectomy. PLoS ONE, 6, e28577. http://dx.doi.org/10.1371/journal.pone.0028577 |
[42] | Seitz,
J. and Aumüller, G. (1990) Biochemical Properties of Secretory Proteins
from Rat Seminal Vesicles: Biochemische Eigenschaften sekretorischer
Proteine der Ratten-Blaschendrüse. Andrologia, 22, 25-32. http://dx.doi.org/10.1111/j.1439-0272.1990.tb02068.x |
[43] | Seitz, J., Keppler, C., Aumüller, G., Polzar, B. and Mannherz, H.G. (1992) SVS II—An Androgen-Dependent Actin-Binding Glycoprotein in Rat Semen. European Journal of Cell Biology, 57, 308-316. eww150225lx |
评论
发表评论