Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53959#.VN2ndCzQrzE
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53959#.VN2ndCzQrzE
ABSTRACT
The
study describes chemo-enzymatic synthesis of organic disulphide
compounds. The reaction was initiated by hydrolysis of thiol acetates
using hydrolytic enzyme lipase (PPL) immobilized on to magnetic
nanoparticles and subsequent formation of organic disulphide compounds.
Lipase was immobilized on to the magnetic nanoparticles by
co-precipitation method via epichlorohydrin chitosan cross-linking,
under mild and eco-friendly conditions. The immobilized lipase enzyme
exhibited broad range of substrate specificity in synthesizing
disulphide compounds, which involves both intra and inter-molecular
disulphide bond formation under anaerobic conditions. The disulphide
compounds synthesized also show a promising antimicrobial activity.
Cite this paper
References
Haritha,
V. , Meshram, H. and Rao, A. (2015) Lipase Immobilized on Magnetic
Nanoparticles: A New Tool for Synthesis of Disulphide Compounds. Green and Sustainable Chemistry, 5, 25-30. doi: 10.4236/gsc.2015.51004.
[1] | James,
P.T., Cui, R.W., Wen, L and Jing, W.Z. (1991) Disulfide Bond Formation
in Peptides by Dimethyl Sulfoxide. Scope and Applications. Journal of
the American Chemical Society, 113, 6657-6662. http://dx.doi.org/10.1021/ja00017a044 |
[2] | Zhengkai,
L., Fang, K., Hang, D., Hualong, X., Haifeng, X and Xiangge, Z. (2013)
Synthesis of Disulfides and Diselenides by Copper-Catalyzed Coupling
Reactions in Water. Organic & Biomolecular Chemistry, 11, 2943-2946.
http://pubs.rsc.org/en/content/articlelanding/2013/ob/c3ob40464a http://dx.doi.org/10.1039/c3ob40464a |
[3] | Rudolf,
M., Stephan, K., Thomas, L., Hanno, L., Thomas, E. and Bernd, G. (1984)
Applications of Synthetic Peptides. Angewandte Chemie, 24, 719-727. http://onlinelibrary.wiley.com/doi/10.1002/anie.198507193/pdf |
[4] | Carolyn,
S.S. and Chris A.K. (2002) Formation and Transfer of Disulphide Bonds
in Living Cells. Nature Reviews Molecular Cell Biology, 3, 836-847. http://www.nature.com/nrm/journal/v3/n11/abs/nrm954.html http://dx.doi.org/10.1038/nrm954 |
[5] | Leena,
K., Pankaj, K., Chandramukhi, S.P. and Siva, S.P. (2013) Synthesis of
Various S-S Linked Symmetric Bisazaheterocycles: A Review. Mini-Reviews
in Organic Chemistry, 10, 268-280. http://benthamscience.com/journal/abstracts.php?journalID=mroc&articleID=113519 http://dx.doi.org/10.2174/1570193X11310030006 |
[6] | Wilkes,
B.C., Hruby, V.J., Castrucci, A.M., Sherbrooke, W.C. and Hadley, M.E.
(1984) Synthesis of a Cyclic Melanotropic Peptide Exhibiting both
Melanin-Concentrating and -Dispersing Activities. Science, 224,
1111-1113. http://www.sciencemag.org/content/224/4653/1111.abstract |
[7] | Hiram,
F. G. (1997) Protein Disulfide Isomerase and Assisted Protein Folding.
The Journal of Biological Chemistry, 272, 29399-29402.
http://www.jbc.org/content/272/47/29399 http://dx.doi.org/10.1074/jbc.272.47.29399 |
[8] | Harshadas,
M. (1993) An Efficient and Mild Cleavage of Thiol Acetate with Clayfen
in the Absence of Solvent. Tetrahedron Letters, 34, 2521-2522. http://www.sciencedirect.com/science/article/pii/S0040403900604574 http://dx.doi.org/10.1016/S0040-4039(00)60457-4 |
[9] | Szajewski,
R.P and Whitesides, G.M. (1980) Rate Constants and Equilibrium
Constants for Thiol-Disulfide Interchange Reactions Involving Oxidized
Gluthathione. Journal of the American Chemical Society, 102, 2011-2026. http://dx.doi.org/10.1021/ja00526a042 |
[10] | Ayodele,
E.T., Olajire, A.A., Amuda, O.S. and Oladoye, S.O. (2003) Synthesis and
Fungicidal Activity of Acetyl Substituted Benzyl Disulfides. Bulletin
of the Chemical Society of Ethiopia, 17, 53-60. http://www.readcube.com/articles/10.4314/bcse.v17i1.61731 |
[11] | Field, L. and Oae, S. (Ed.) (1977) Organic Chemistry of Sulfur. Plenum, London, 205. |
[12] | Sato,
T., Otera, J. and Nozaki, H. (1990) Activation and Synthetic
Applications of Thiostannanes. Efficient Conversion of Thiol Acetates
into Disulfides. Tetrahedron Letters, 31, 3595-3596. http://www.sciencedirect.com/science/article/pii/S0040403900944514 http://dx.doi.org/10.1016/S0040-4039(00)94451-4 |
[13] | Anthony,
P.B., John, A.M., Christopher, W.P and Nicholas, F.W. (1993)
Radical-Induced Fragmentations of Ketoepoxides. Tetrahedron, 49,
10643-10654. http://www.sciencedirect.com/science/article/pii/S0040402001815544 http://dx.doi.org/10.1016/S0040-4020(01)81554-4 |
[14] | Bhaskar,
R.A., Rehman, H., Krishnakumari, B. and Yadav, J.S. (1994) Lipase
Catalysed Kinetic Resolution of Racemic (±)
2,2-dimethyl-3-(2-methyl-1-propenyl)-cyclopropane Carboxyl Esters.
Tetrahedron Letters, 35, 2611-2614. http://www.sciencedirect.com/science/article/pii/S0040403900771863 http://dx.doi.org/10.1016/S0040-4039(00)77186-3 |
[15] | Yadav,
J.S., Bhaskar, R.A., Ravindra, R.Y. and Venkata, R.R.K. (1997)
Enzymatic Resolution of (±)-Cis-3-(2,2-dic-
hloro-3,3,3-trifluoropropyl)-2,2-dimethylcyclopropane Carboxylate.
Tetrahedron: Asymmetry, 8, 2291-2294. http://www.sciencedirect.com/science/article/pii/S0957416697002516 http://dx.doi.org/10.1016/S0957-4166(97)00251-6 |
[16] | Tomasz,
S., Marta, Z.B and Michal, P.M. (2013) Lipase-Immobilized Magnetic
Chitosan Nanoparticles for Kinetic Resolution of (R,S)-Ibuprofen.
Journal of Molecular Catalysis B: Enzymatic, 94, 7-14. http://www.sciencedirect.com/science/article/pii/S1381117713001070 http://dx.doi.org/10.1016/j.molcatb.2013.04.008 |
[17] | Xun,
E.-N., Lv, X.-L., Kang, W., Wang, J.-X., Zhang, H., Wang, L. and Wang,
Z. (2012) Immobilization of Pseudomonas fluorescens Lipase onto Magnetic
Nanoparticles for Resolution of 2-Octanol. Applied Biochemistry and
Biotechnology, 168, 697-707.
http://link.springer.com/article/10.1007%2Fs12010-012-9810-9 http://dx.doi.org/10.1007/s12010-012-9810-9 |
[18] | Bayramoglu,
G. and Arica, M.Y. (2008) Preparation of
Poly(glycidylmethacrylate-methylmethacrylate) Magnetic Beads:
Application in Lipase Immobilization. Journal of Molecular Catalalysis
B: Enzymatic, 55, 76-83. http://www.sciencedirect.com/science/article/pii/S1381117708000544 http://dx.doi.org/10.1016/j.molcatb.2008.01.012 |
[19] | Zhang,
D.H., Yuwen, L.X., Xie, Y.L., Wei, L. and Li, X.B. (2012) Improving
Immobilization of Lipase onto Magnetic Microspheres with Moderate
Hydrophobicity/Hydrophilicity. Colloids and Surfaces B: Biointerfaces,
89, 73-78. http://www.sciencedirect.com/science/article/pii/S0927776511005194 http://dx.doi.org/10.1016/j.colsurfb.2011.08.031 |
[20] | Laila,
H.A., Rafat, M.E., Lobna, A.E.N., Ahmed, M.A., Mohamed, I. and Amin,
A.S. (2014) Metal Based Pharmacologically Active Agents: Synthesis,
Structural Characterization, Molecular Modeling, CT-DNA Binding Studies
and in Vitro Antimicrobial Screening of Iron(II) Bromosalicylidene Amino
Acid Chelates. Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy, 117, 366-378. http://www.sciencedirect.com/science/article/pii/S1386142513008044 http://dx.doi.org/10.1016/j.saa.2013.07.056 |
[21] | Carl, R.J. (1998) Biotransformations in the Synthesis of Enantiopure Bioactive Molecules. Accounts of Chemical Research, 31, 333-341. http://dx.doi.org/10.1021/ar970013q |
[22] | Barry, M.T. (1978) a-Sulfenylated Carbonyl Compounds in Organic Synthesis. Chemical Reviews, 78, 363-382. http://dx.doi.org/10.1021/cr60314a002 |
[23] | Alban,
C., Rahul, A.W., Srijit, B., Andreas, O., Per, J.R.S. and Joseph,
S.M.S. (2014) One-Pot Synthesis of Keto Thioethers by
Palladium/Gold-Catalyzed Click and Pinacol Reactions. Organic Letters,
16, 5556–5559. http://dx.doi.org/10.1021/ol502553p |
[24] | Scott,
E.D., Sergio, R., Matthew, P.W. and Hao, W. (2014) Catalytic,
Enantioselective Sulfenylation of Ketone-Derived Enoxysilanes. Journal
of the American Chemical Society, 136, 13016-13028. http://dx.doi.org/10.1021/ja506133z eww150213lx |
评论
发表评论