Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=54114#.VO2EgyzQrzE
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=54114#.VO2EgyzQrzE
Affiliation(s)
1Faculty of Computer System and Software Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia.
2Faculty of Electrical and Electronic Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia.
2Faculty of Electrical and Electronic Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia.
ABSTRACT
In
metabolic network modelling, the accuracy of kinetic parameters has
become more important over the last two decades. Even a small
perturbation in kinetic parameters may cause major changes in a model’s
response. The focus of this study is to identify the kinetic parameters,
using two distinct approaches: firstly, a One-at-a-Time Sensitivity
Measure, performed on 185 kinetic parameters, which represent
glycolysis, pentose phosphate, TCA cycle, gluconeogenesis, glycoxylate
pathways, and acetate formation. Time profiles for sensitivity indices
were calculated for each parameter. Seven kinetic parameters were found
to be highly affected in the model response; secondly, particle swarm
optimization was applied for kinetic parameter identification of a
metabolic network model. The simulation results proved the effectiveness
of the proposed method.
KEYWORDS
Metabolic Engineering, Metabolic Network, Dynamic Model, Sensitivity Analysis, Optimization and Estimation
Cite this paper
References
Adam
Kunna, M. , Abdul Kadir, T. , Jaber, A. and Odili, J. (2015)
Large-Scale Kinetic Parameter Identification of Metabolic Network Model
of E. coli Using PSO. Advances in Bioscience and Biotechnology, 6, 120-130. doi: 10.4236/abb.2015.62012.
[1] | Berry,
A., Dodge, T.C., Pepsin, M. and Weyler, W. (2002) Application of
Metabolic Engineering to Improve Both the Production and Use of Biotech
Indigo. Journal of Industrial Microbiology & Biotechnology, 28,
127-133. http://download.springer.com/static/pdf/328/art%253A10.1038%252Fsj%252Fjim%252F7000228.pdf? auth66=1408430581_f695792c4483a692fced6688ab3304cd&ext=.pdf http://dx.doi.org/10.1038/sj.jim.7000228 |
[2] | Wright,
B.E., Butler, M.H. and Albe, K.R. (1992) Systems Analysis of the
Tricarboxylic Acid Cycle in Dictyostelium discoideum. Journal of
Biological Chemistry, 267, 3101-3105. http://www.jbc.org/content/267/5/3106.full.pdf |
[3] | Nikolaev,
E.V. (2010) The Elucidation of Metabolic Pathways and Their
Improvements Using Stable Optimization of Large-Scale Kinetic Models of
Cellular Systems. Elsevier Journal Metabolic Engineering, 12, 26-38. http://ac.els-cdn.com/S1096717609000718/1-s2.0-S1096717609000718-main.pdf?_tid=661cb9a0-25d6-11e4-bb74-00000aacb362&acdnat=1408256529_6ae343443dc3684966093f1fcdecbc33 http://dx.doi.org/10.1016/j.ymben.2009.08.010 |
[4] | Copeland,
W.B., Bartley, B.A., Chandran, D., Galdzicki, M., Kim, K.H., Sleight,
S.C., Maranas, C.D. and Sauro, H.M. (2012) Computational Tools for
Metabolic Engineering. Metabolic Engineering, 14, 270-280. http://www.sciencedirect.com/science/article/pii/S1096717612000250 http://dx.doi.org/10.1016/j.ymben.2012.03.001 |
[5] | Tohsato,
Y., Ikuta, K., Shionoya, A., Mazaki, Y. and Ito, M. (2013) Parameter
Optimization and Sensitivity Analysis for Large Kinetic Models Using a
Real-Coded Genetic Algorithm. Gene, 518, 84-90. http://ac.els-cdn.com/S0378111912015508/1-s2.0-S0378111912015508-main.pdf?_tid=f1cc98fe-25d5-11e4-b24d-00000aacb361&acdnat=1408256334_5e4e17ed6dec6011fcfe6327b7176952 http://dx.doi.org/10.1016/j.gene.2012.11.080 |
[6] | Kadir,
T.A.A., Mannan, A.A., Kierzek, A.M., McFadden, J. and Shimizu, K.
(2010) Modeling and Simulation of the Main Metabolism in Escherichia
coli and Its Several Single-Gene Knockout Mutants with Experimental
Verification. Microbial Cell Factories, 9, 88. http://www.readcube.com/articles/10.1186/1475-2859-9-88 http://dx.doi.org/10.1186/1475-2859-9-88 |
[7] | Chassagnole,
C., Noisommit-Rizzi, N., Schmid, J.W., Mauch, K. and Reuss, M. (2002)
Dynamic Modelling of the Central Carbon Metabolism of Escherichia coli.
Biotechnology and Bioengineering, 79, 53-73. file:///C:/Users/fskkp/Downloads/0046352641930e5577000000%20(2).pdf http://dx.doi.org/10.1002/bit.10288 |
[8] | Di
Maggio, J., Ricci, J.C.D. and Diaz, M.S. (2010) Parameter Estimation in
Kinetic Models for Large Scale Metabolic Networks with Advanced
Mathematical Programming Techniques. Computer Aided Chemical
Engineering, 28, 355-360. http://www.aidic.it/escape20/webpapers/358DiMaggio.pdf |
[9] | Abido,
M.A. (2009) Multiobjective Particle Swarm Optimization for
Environmental/Economic Dispatch Problem. Electric Power Systems
Research, 79, 1105-1113. http://www.sciencedirect.com/science/article/pii/S0378779609000388 http://dx.doi.org/10.1016/j.epsr.2009.02.005 |
[10] | Jaber,
A., Ahmad, A. and Abdalla, A. (2013) An Investigation of Scaled-FLC
Using PSO for Multi-Area Power System Load Frequency Control. Energy and
Power Engineering, 5, 458-462. http://www.scirp.org/journal/PaperInformation.aspx?paperID=38367#.VAFricWSyME http://dx.doi.org/10.4236/epe.2013.54B088 |
[11] | Rini,
D.P., Shamsuddin, S.M. and Yuhaniz, S.S. (2011) Particle Swarm
Optimization (PSO) Based Turbine Control. International Journal of
Computer Applications, 14, 19-27. http://www.ijcaonline.com/volume14/number1/pxc3872331.pdf |
[12] | Baker,
S.M., Schallau, K. and Junker, B.H. (2010) Comparison of Different
Algorithms for Simultaneous Estimation of Multiple Parameters in Kinetic
Metabolic Models. Journal of Integrative Bioinformatics, 7, 133. http://journal.imbio.de/articles/pdf/jib-133.pdf |
[13] | Mauch,
K., Arnold, S. and Reuss, M. (1997) Dynamic Sensitivity Analysis for
Metabolic Systems. Chemical Engineering Science, 52, 2589-2598. http://ac.els-cdn.com/S0009250997000754/1-s2.0-S0009250997000754-main.pdf?_tid=2768a03e-25d6-11e4-9516-00000aacb35f&acdnat=1408256424_6a3d35b3403561719dbedd588c0cca68 |
[14] | Dasila,
P.K., Choudhury, I., Saraf, D., Chopra, S. and Dalai, A. (2012)
Parametric Sensitivity Studies in a Commercial FCC Unit. Advance in
Chemical Engineering and Science, 2, 136-149. http://dx.doi.org/10.4236/aces.2012.21017 |
[15] | Xu,
Z.-X. and Sun, X. (2008) Constrain-Based Analysis of Gene Deletion on
the Metabolic Flux Redistribution of Saccharomyces cerevisiae. Journal
of Biomedical Science and Engineering, 1, 121-126. http://www.srpublishing.org/journal/jbise |
[16] | Campolongo,
F., Cariboni, J. and Saltelli, A. (2007) An Effective Screening Design
for Sensitivity Analysis of Large Model. Environmental Modelling &
Software, 22, 1509-1518. http://www.stat.osu.edu/~comp_exp/jour.club/CamCarSal_EngModellingSoftware-2007.pdf |
[17] | Hoquea,
M.A., Ushiyamab, H., Tomitaa, M. and Shimizua, K. (2005) Dynamic
Responses of the Intracellular Metabolite Concentrations of the Wild
Type and pykA Mutant Escherichia coli against Pulse Addition of Glucose
or NH3 under Those Limiting Continuous Cultures. Biochemical Engineering
Journal, 26, 38-49. http://www.sciencedirect.com/science/article/pii/S1369703X05001865 http://dx.doi.org/10.1016/j.bej.2005.05.012 |
[18] | Eberhart,
R.C. and Kennedy, J. (1995) A New Optimizer Using Particle Swarm
Theory. Proceedings of the 6th International Symposium on Micro Machine
and Human Science, Nagoya, 4-6 October 1995, 39-43. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=494215 http://dx.doi.org/10.1109/MHS.1995.494215 eww150225lx |
评论
发表评论