跳至主要内容

Design and Implementation of Low-Pass, High-Pass and Band-Pass Finite Impulse Response (FIR) Filters Using FPGA

Read  full  paper  at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=54118#.VO2HqSzQrzE

ABSTRACT
This paper presents the design and implementation of a low-pass, high-pass and a hand-pass Finite Impulse Response (FIR) Filter using SPARTAN-6 Field Programmable Gate Array (FPGA) device. The filter performance is tested using Filter Design and Analysis (FDA) and FIR tools from Mathworks. The FDA Tool is used to define the filter order and coefficients, and the FIR tool is used for Simulink simulation. The FPGA implementation is carried out using Spartan-6 LX75T-3FGG676C for different filter specifications and simulated with the help of Xilinx ISE (Integrated Software Environment). System Generator ISE design suit 14.6i is used in synthesizing and co-simulation for FPGA filter output verification. Finally, comparison is done between the results obtained from the software simulations and those from FPGA using hardware co-simulation. The simulation waveforms and synthesis reports verify the parallel implementation of FPGA which proves its effectiveness in terms of speed, resource usage and power consumption.
 
Cite this paper
Kolawole, E. , Ali, W. , Cofie, P. , Fuller, J. , Tolliver, C. and Obiomon, P. (2015) Design and Implementation of Low-Pass, High-Pass and Band-Pass Finite Impulse Response (FIR) Filters Using FPGA. Circuits and Systems, 6, 30-48. doi: 10.4236/cs.2015.62004.
 
References
[1]Ruan, A.W., Liao, Y.B. and Li, J.X. (2009) An ALU-Based Universal Architecture for FIR Filters. IEEE Proceedings of International Conference on communications, Circuits and Systems, Milpitas, July 2009, 1070-1073.
 
[2]Panayotatos, P. (2005) Frequency Response of Filters. Rutgers University, New Brunswick.
 
[3]Quayyum, A. and Mazher, M. (2012) Design of Programmable, Efficient Finite Impulse Response Filter Based on Distributive Arithmetic Algorithm. International Journal of Information Technology and Electrical Engineering, 1, 19-24.
 
[4]Monmasson, E., et al. (2011) FPGAs in Industrial Control Applications. IEEE Transactions on Industrial informatics, 7, 224-243.
http://dx.doi.org/10.1109/TII.2011.2123908
 
[5]Wenjing, H., Guoyun, Z. and Waiyun, L. (2011) Self-Programmable Multipurpose Digital Filter Design Based on FPGA. IEEE Proceedings of International Conference on Internet Technology and Applications (iTAP), Wuhan, August 2011, 1-5.
 
[6]Mohanakrishnan, S. and joseph, B.E. (1995) Automatic Implementation of FIR Filters on Field Programmable Gate Arrays. IEEE Signal Processing Letters, 2, 51-53.
 
[7]Manal, H.J. and Asaad, H.S. (2013) High-Pass Digital Filter Implementation Using FPGA. IEEE International Journal of Advanced Computer Science and Applications (IJACSA), 13, 41-50.
 
[8]Abdullah, H.N. (2008) Design and Implementation of Programmable FIR Filter Using FPGA. Engineering and Technology Journal, 26.
 
[9]Xilinx White Paper Number 6984.
www.xilinx.com
 
[10]Litwin, L. (2002) FIR and IIR Digital Filters. IEEE Potentials, 19, 28-31.                  eww150225lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...