跳至主要内容

Transport Properties of Novel Hybrid Cation-Exchange Membranes on the Base of MF-4SC and Halloysite Nanotubes

Read  full  paper  at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53363#.VMBgyCzQrzE

Author(s)  
Anatoly Filippov, Daria Khanukaeva, Denis Afonin, Galina Skorikova, Evgeny Ivanov, Vladimir Vinokurov, Yuri Lvov

Affiliation(s)
Gubkin Russian State University of Oil and Gas, Moscow, Russia.

ABSTRACT
The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of physicochemical parameters (averaged and individual diffusion coefficients and averaged distribution coefficients of ion pairs in the membrane) of system “electrolyte solution—ion-exchange membrane—water”, which was proposed earlier, is further developed. The parameters of hybrid membranes on the base of MF-4SC and nanotubes of halloysite (5% wt and 8% wt) are obtained from experimental data on diffusion permeability of NaCl solutions using theoretical calculations. New model of three-layer membrane system can be used for refining calculated results with taking into account both diffusive layers. It is shown that adding of halloysite nanotubes into the membrane volume noticeably affects exchange capacity as well as structural and transport characteristics of original perfluorinated membranes. Hybrid membranes on the base of MF-4SC and halloysite nanotubes can be used in fuel cells and catalysis.

KEYWORDS
Three Layer Membrane Model, The Nernst-Planck Approach, Diffusion Permeability, Perfluorinated Cation-Exchange Membrane, Hybrid MF-4SC/Halloysite Membrane

Cite this paper
Filippov, A. , Khanukaeva, D. , Afonin, D. , Skorikova, G. , Ivanov, E. , Vinokurov, V. and Lvov, Y. (2015) Transport Properties of Novel Hybrid Cation-Exchange Membranes on the Base of MF-4SC and Halloysite Nanotubes. Journal of Materials Science and Chemical Engineering, 3, 58-65. doi: 10.4236/msce.2015.31009.

References
[1]Pourcelly, G., Nikonenko, V.V., Pismenskaya, N.D. and Yaroslavtsev, A.B. (2012) Ionic Interactions in Natural and Synthetic Macromolecules. In: Ciferri, A. and Perico, A., Eds., Applications of Charged Membranes in Separation, Fuel Cells and Emerging Processes, John Wiley & Sons Inc., Hoboken, 761-816.
 
[2]Yaroslavtsev, A.B. and Nikonenko, V.V. (2009) Ion-Exchange Membrane Materials: Properties, Modification, and Practical Application. Nanotechnologies in Russia, 4, 137-159. http://dx.doi.org/10.1134/S199507800903001X
 
[3]Villaluenga, J.P.G., Barragan, V.M., Seoane, B. and Ruiz-Bauza, C. (2006) Sorption and Permeation of Solutions of Chloride Salts, Water and Methanol in a Nafion Membrane. Electrochimica Acta, 51, 6297-6303. http://dx.doi.org/10.1016/j.electacta.2006.04.011
 
[4]Izquierdo-Gil, M.A., Barragan, V.M., Godino, M.P., Villaluenga, J.P.G., Ruiz-Bauza, C. and Seoane, B. (2009) Salt Diffusion through Cation-Exchange Membranes in Alcohol-Water Solutions. Separation and Purification Technology, 64, 321-325. http://dx.doi.org/10.1016/j.seppur.2008.10.017
 
[5]Ramkumar, J. (2012) Nafion Perfluorosulphonate Membrane: Unique Properties and Various Applications. In: Banerjee, S. and Tyagi, A.K., Eds., Funct. Materials: Preparation, Processes and Applications, Elsevier Ltd., London, 549- 577. http://dx.doi.org/10.1016/B978-0-12-385142-0.00013-1
 
[6]Strathmann, H., Grabowski, A. and Eigenberger, G. (2013) Ion-Exchange Membranes in the Chemical Process Industry. Industrial & Engineering Chemistry Research, 52, 10364-10379. http://dx.doi.org/10.1021/ie4002102
 
[7]Ahmad, H., Kamarudin, S.K., Hasran, U.A. and Daud, W.R.W. (2010) Overview of Hybrid Membranes for Direct- Methanol Fuel-Cell Applications. International Journal of Hydrogen Energy, 35, 2160-2175. http://dx.doi.org/10.1016/j.ijhydene.2009.12.054
 
[8]Takata, K., Yamamoto, Y. and Sata, T. (2000) Modification of Transport Properties of Ion-Exchange Membranes: XIV. Effect of Molecular Weight of Polyethyleneimine Bonded to the Surface of Cation-Exchange Membranes by Acid- Amide Bonding on Electrochemical Properties of the Membranes. Journal of Membrane Science, 179, 101-107. http://dx.doi.org/10.1016/S0376-7388(00)00503-2
 
[9]Yaroslavtsev, A.B. (2012) Correlation between the Properties of Hybrid Ion-Exchange Membranes and the Nature and Dimensions of Dopant Particles. Nanotechnologies in Russia, 7, 437-451. http://dx.doi.org/10.1134/S1995078012050175
 
[10]Fila, V. and Bouzek, K. (2003) A Mathematical Model of Multiple Ion Transport across an Ion-Selective Membrane under Current Load Conditions. Journal of Applied Electrochemistry, 33, 675-684. http://dx.doi.org/10.1023/A:1025018726112
 
[11]Seda, L. and Kosek, J. (2008) Predictive Modeling of Ionic Permse-lectivity of Porous Media. Computers & Chemical Engineering, 32, 125-134. http://dx.doi.org/10.1016/j.compchemeng.2007.03.023
 
[12]Filippov, A.N., Starov, V.M., Kononenko, N.A. and Berezina, N.P. (2008) Asymmetry of Diffusion Permeability of Bilayer Membranes. Advances in Colloid and Interface Science, 139, 29-44. http://dx.doi.org/10.1016/j.cis.2008.01.009
 
[13]Belashova, E.D., Melnik, N.A., Pismenskaya, N.D., Shevtsova, K.A., Nebavsky, A.V. and Lebedev, K.A. (2012) Overlimiting Mass Transfer Through Cation-Exchange Membranes Modified by Nafion Film and Carbon Nanotubes. Electrochimica Acta, 59, 412-423. http://dx.doi.org/10.1016/j.electacta.2011.10.077
 
[14]Romero, V., Vázquez, M.I. and Benavente, J. (2013) Study of Ionic and Diffusive Transport through a Regenerated Cellulose Nanoporous Membrane. Journal of Membrane Science, 433, 152-159. http://dx.doi.org/10.1016/j.memsci.2013.01.012
 
[15]Berezina, N.P., Kononenko, N.A., Filippov, A.N., Shkirskaya, S.A., Falina, I.V. and Sycheva, A.A.-R. (2010) Electrotransport Properties and Morphology of MF-4SK Membranes after Surface Modification with Polyaniline. Russian Journal of Electrochemistry, 46, 515-524. http://dx.doi.org/10.1134/S1023193510050010
 
[16]Filippov, A.N., Safronova, E.Yu. and Yaroslavtsev, A.B. (2014) Theoretical and Experimental Investigation of Diffusion Permeability of Hybrid MF-4SC Membranes with Silica Nanoparticles. Journal of Membrane Science, 471, 110- 117. http://dx.doi.org/10.1016/j.memsci.2014.08.008
 
[17]Martynov, G.A., Starov, V.M. and Churaev, N.V. (1980) Theory of Membrane Separation of Solutions. Colloid J. of the USSR, 42, 547-553.
 
[18]Filippov, A.N., Iksanov, R.Kh., Kononenko, N.A., Berezina, N.P. and Falina, I.V. (2010) Theoretical and Experimental Study of Asymmetry of Diffusion Permeability of Composite Membranes. Colloid Journal, 72, 243-254. http://dx.doi.org/10.1134/S1061933X10020158
 
[19]Zabolotsky, V.I. and Nikonenko, V.V. (1996) Ion Transport in Membranes. Nauka, Moscow.
 
[20]Lvov, Y., Price, R., Gaber, B. and Ichinose, I. (2002) Thin Film Nanofabrication via Layer-by-Layer Adsorption of Tubule Halloysite, Spherical Silica, and Polycations. Colloids and Surfaces: Engineering, 198-200, 375-382.
 
[21]Lvov, Y. and Abdullayev, E. (2013) Functional Polymer—Clay Nanotube Composites with Sustained Release of Chemical Agents. Progress in Polymer Sciences, 38, 1690-1719. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.009
 
[22]Berns, B.A., Romanovicz, V., de Camargo Forte, M.M. and Carpenter, D.E.O.S. (2013) Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells. Int. J. of Chemical, Biomolecular, Metallurgical, Materials Science and Engineering, 7, 704-709.
 
[23]Berezina, N.P., Kononenko, N.A., Dyomina, O.A. and Gnusin, N.P. (2008) Characterization of Ion-Exchange Membrane Materials: Properties vs Structure. Advances in Colloid and Interface Science, 139, 3-28. http://dx.doi.org/10.1016/j.cis.2008.01.002                                                                 eww150122lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...