跳至主要内容

The P2Y2 Receptor Interacts with VE-Cadherin and VEGF Receptor-2 to Regulate Rac1 Activity in Endothelial Cells

Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52829#.VKn7EcnQrzE

Vascular endothelial cadherin (VE-cadherin) mediates homophylic adhesion between endothelial cells and is an important regulator of angiogenesis, blood vessel permeability and leukocyte trafficking. Rac1, a member of the Rho family of GTPases, controls VE-cadherin adhesion by acting downstream of several growth factors, including angiopoietin-1 and vascular endothelial growth factor (VEGF). Here we show that UTP-induced activation of the Gq protein-coupled P2Y2 nucleotide receptor (P2Y2R) in human coronary artery endothelial cells (HCAECs) activated Rac1 and caused a transient complex to form between P2Y2R, VE-cadherin and VEGF receptor-2 (VEGFR-2). Knockdown of VE-cadherin expression with siRNA did not affect UTP-induced activation of extracellular signal-regulated kinases 1/2 (ERK1/2) but led to a loss of UTP-induced Rac1 activation and tyrosine phosphorylation of p120 catenin, a cytoplasmic protein known to interact with VE- cadherin. Activation of the P2Y2R by UTP also caused a prolonged interaction between p120 catenin and vav2 (a guanine nucleotide exchange factor for Rac) that correlated with the kinetics of UTP-induced tyrosine phosphorylation of p120 catenin and VE-cadherin. Inhibitors of VEGFR-2 (SU1498) or Src (PP2) significantly diminished UTP-induced Rac1 activation, tyrosine phosphorylation of p120 catenin and VE-cadherin, and association of the P2Y2R with VE-cadherin and p120 catenin with vav2. These findings suggest that the P2Y2R uses Src and VEGFR-2 to mediate association of the P2Y2R with VE-cadherin complexes in endothelial adherens junctions to activate Rac1.
Cite this paper
Liao, Z. , Cao, C. , Wang, J. , Huxley, V. , Baker, O. , Weisman, G. and Erb, L. (2014) The P2Y2 Receptor Interacts with VE-Cadherin and VEGF Receptor-2 to Regulate Rac1 Activity in Endothelial Cells. Journal of Biomedical Science and Engineering, 7, 1105-1121. doi: 10.4236/jbise.2014.714109
 

[1] Mehta, D. and Malik, A.B. (2006) Signaling Mechanisms Regulating Endothelial Permeability. Physiological Reviews, 86, 279-367.
http://dx.doi.org/10.1152/physrev.00012.2005
[2] Wojciak-Stothard, B. and Ridley, A.J. (2002) Rho GTPases and the Regulation of Endothelial Permeability. Vascular Pharmacology, 39, 187-199.
http://dx.doi.org/10.1016/S1537-1891(03)00008-9
[3] Spindler, V., Schlegel, N. and Waschke, J. (2010) Role of GTPases in Control of Microvascular Permeability. Cardiovascular Research, 87, 243-253.
http://dx.doi.org/10.1093/cvr/cvq086
[4] Beckers, C.M., van Hinsbergh, V.W. and van Nieuw Amerongen, G.P. (2010) Driving Rho GTPase Activity in Endothelial Cells Regulates Barrier Integrity. Thrombosis and Haemostasis, 103, 40-55.
http://dx.doi.org/10.1160/TH09-06-0403
[5] Harvey, J., Erb, L., Huxley, V., Weisman, G.A., Garrad, R. and Wang, J. (2012) P2Y2 Receptor Dependent Modulation of Microvascular Barrier Function. FASEB Journal, 26, Abstract 855.4.
[6] Seye, C.I., Kong, Q., Erb, L., Garrad, R.C., Krugh, B., Wang, M., Turner, J.T., Sturek, M., Gonzalez, F.A. and Weisman, G.A. (2002) Functional P2Y2 Nucleotide Receptors Mediate Uridine 5'-Triphosphate-Induced Intimal Hyperplasia in Collared Rabbit Carotid Arteries. Circulation, 106, 2720-2726.
http://dx.doi.org/10.1161/01.CIR.0000038111.00518.35
[7] Chen, Y., Corriden, R., Inoue, Y., Yip, L., Hashiguchi, N., Zinkernagel, A., Nizet, V., Insel, P.A. and Junger, W.G. (2006) ATP Release Guides Neutrophil Chemotaxis via P2Y2 and A3 Receptors. Science, 314, 1792-1795.
http://dx.doi.org/10.1126/science.1132559
[8] Muller, T., Robaye, B., Vieira, R.P., Ferrari, D., Grimm, M., Jakob, T., Martin, S.F., Di Virgilio, F., Boeynaems, J.M., Virchow, J.C. and Idzko, M. (2010) The Purinergic Receptor P2Y2 Receptor Mediates Chemotaxis of Dendritic Cells and Eosinophils in Allergic Lung Inflammation. Allergy, 65, 1545-1553.
http://dx.doi.org/10.1111/j.1398-9995.2010.02426.x
[9] Cicko, S., Lucattelli, M., Muller, T., Lommatzsch, M., De Cunto, G., Cardini, S., Sundas, W., Grimm, M., Zeiser, R., Durk, T., Zissel, G., Boeynaems, J.M., Sorichter, S., Ferrari, D., Di Virgilio, F., Virchow, J.C., Lungarella, G. and Idzko, M. (2010) Purinergic Receptor Inhibition Prevents the Development of Smoke-Induced Lung Injury and Emphysema. Journal of Immunology, 185, 688-697.
http://dx.doi.org/10.4049/jimmunol.0904042
[10] Agca, C., Seye, C., Kashuba Benson, C.M., Rikka, S., Chan, A.W., Weisman, G.A. and Agca, Y. (2009) Development of a Novel Transgenic Rat Overexpressing the P2Y2 Nucleotide Receptor Using a Lentiviral Vector. Journal of Vascular Research, 46, 447-458.
http://dx.doi.org/10.1159/000194274
[11] Ajit, D., Woods, L.T., Camden, J.M., Thebeau, C.N., El-Sayed, F.G., Greeson, G.W., Erb, L., Petris, M.J., Miller, D.C., Sun, G.Y. and Weisman, G.A. (2014) Loss of P2Y2 Nucleotide Receptors Enhances Early Pathology in the TgCRND8 Mouse Model of Alzheimer’s Disease. Molecular Neurobiology, 49, 1031-1042.
http://dx.doi.org/10.1007/s12035-013-8577-5
[12] Schumacher, D., Strilic, B., Sivaraj, K.K., Wettschureck, N. and Offermanns, S. (2013) Platelet-Derived Nucleotides Promote Tumor-Cell Transendothelial Migration and Metastasis via P2Y2 Receptor. Cancer Cell, 24, 130-137.
http://dx.doi.org/10.1016/j.ccr.2013.05.008
[13] Liao, Z., Seye, C.I., Weisman, G.A. and Erb, L. (2007) The P2Y2 Nucleotide Receptor Requires Interaction with αv Integrins to Access and Activate G12. Journal of Cell Science, 120, 1654-1662.
http://dx.doi.org/10.1242/jcs.03441
[14] Bagchi, S., Liao, Z., Gonzalez, F.A., Chorna, N.E., Seye, C.I., Weisman, G.A. and Erb, L. (2005) The P2Y2 Nucleotide Receptor Interacts with αv Integrins to Activate Go and Induce Cell Migration. Journal of Biological Chemistry, 280, 39050-39057.
http://dx.doi.org/10.1074/jbc.M504819200
[15] Liu, J., Liao, Z., Camden, J., Griffin, K.D., Garrad, R.C., Santiago-Perez, L.I., Gonzalez, F.A., Seye, C.I., Weisman, G.A. and Erb, L. (2004) Src Homology 3 Binding Sites in the P2Y2 Nucleotide Receptor Interact with Src and Regulate Activities of Src, Proline-Rich Tyrosine Kinase 2, and Growth Factor Receptors. Journal of Biological Chemistry, 279, 8212-8218.
http://dx.doi.org/10.1074/jbc.M312230200
[16] Seye, C.I., Yu, N., Gonzalez, F.A., Erb, L. and Weisman, G.A. (2004) The P2Y2 Nucleotide Receptor Mediates Vascular Cell Adhesion Molecule-1 Expression through Interaction with VEGF Receptor-2 (KDR/Flk-1). Journal of Biological Chemistry, 279, 35679-35686.
http://dx.doi.org/10.1074/jbc.M401799200
[17] Wheelock, M.J. and Johnson, K.R. (2003) Cadherin-Mediated Cellular Signaling. Current Opinion in Cell Biology, 15, 509-514.
http://dx.doi.org/10.1016/S0955-0674(03)00101-7
[18] Breviario, F., Caveda, L., Corada, M., Martin-Padura, I., Navarro, P., Golay, J., Introna, M., Gulino, D., Lampugnani, M.G. and Dejana, E. (1995) Functional Properties of Human Vascular Endothelial Cadherin (7B4/Cadherin-5), an Endothelium-Specific Cadherin. Arteriosclerosis, Thrombosis, and Vascular Biology, 15, 1229-1239.
http://dx.doi.org/10.1161/01.ATV.15.8.1229
[19] Corada, M., Mariotti, M., Thurston, G., Smith, K., Kunkel, R., Brockhaus, M., Lampugnani, M.G., Martin-Padura, I., Stoppacciaro, A., Ruco, L., McDonald, D.M., Ward, P.A. and Dejana, E. (1999) Vascular Endothelial-Cadherin Is an Important Determinant of Microvascular Integrity in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 96, 9815-9820.
http://dx.doi.org/10.1073/pnas.96.17.9815
[20] Matsuyoshi, N., Toda, K., Horiguchi, Y., Tanaka, T., Nakagawa, S., Takeichi, M. and Imamura, S. (1997) In Vivo Evidence of the Critical Role of Cadherin-5 in Murine Vascular Integrity. Proceedings of the Association of American Physicians, 109, 362-371.
[21] Gotsch, U., Borges, E., Bosse, R., Boggemeyer, E., Simon, M., Mossmann, H. and Vestweber, D. (1997) VE-Cadherin Antibody Accelerates Neutrophil Recruitment in Vivo. Journal of Cell Science, 110, 583-588.
[22] Dejana, E., Bazzoni, G. and Lampugnani, M.G. (1999) Vascular Endothelial (VE)-Cadherin: Only an Intercellular Glue? Experimental Cell Research, 252, 13-19.
http://dx.doi.org/10.1006/excr.1999.4601
[23] Carmeliet, P., Lampugnani, M.G., Moons, L., Breviario, F., Compernolle, V., Bono, F., Balconi, G., Spagnuolo, R., Oostuyse, B., Dewerchin, M., Zanetti, A., Angellilo, A., Mattot, V., Nuyens, D., Lutgens, E., Clotman, F., de Ruiter, M.C., Gittenberger-de Groot, A., Poelmann, R., Lupu, F., Herbert, J.M., Collen, D. and Dejana, E. (1999) Targeted Deficiency or Cytosolic Truncation of the VE-Cadherin Gene in Mice Impairs VEGF-Mediated Endothelial Survival and Angiogenesis. Cell, 98, 147-157.
http://dx.doi.org/10.1016/S0092-8674(00)81010-7
[24] Gory-Faure, S., Prandini, M.H., Pointu, H., Roullot, V., Pignot-Paintrand, I., Vernet, M. and Huber, P. (1999) Role of Vascular Endothelial-Cadherin in Vascular Morphogenesis. Development, 126, 2093-2102.
[25] Zanetta, L., Corada, M., Grazia Lampugnani, M., Zanetti, A., Breviario, F., Moons, L., Carmeliet, P., Pepper, M.S. and Dejana, E. (2005) Downregulation of Vascular Endothelial-Cadherin Expression Is Associated with an Increase in Vascular Tumor Growth and Hemorrhagic Complications. Thrombosis and Haemostasis, 93, 1041-1046.
[26] Rahimi, N. and Kazlauskas, A. (1999) A Role for Cadherin-5 in Regulation of Vascular Endothelial Growth Factor Receptor 2 Activity in Endothelial Cells. Molecular Biology of the Cell, 10, 3401-3407.
http://dx.doi.org/10.1091/mbc.10.10.3401
[27] Lampugnani, M.G., Zanetti, A., Breviario, F., Balconi, G., Orsenigo, F., Corada, M., Spagnuolo, R., Betson, M., Braga, V. and Dejana, E. (2002) VE-Cadherin Regulates Endothelial Actin Activating Rac and Increasing Membrane Association of Tiam. Molecular Biology of the Cell, 13, 1175-1189.
http://dx.doi.org/10.1091/mbc.01-07-0368
[28] Vincent, P.A., Xiao, K., Buckley, K.M. and Kowalczyk, A.P. (2004) VE-Cadherin: Adhesion at Arm’s Length. American Journal of Physiology: Cell Physiology, 286, C987-C997.
http://dx.doi.org/10.1152/ajpcell.00522.2003
[29] Noren, N.K., Liu, B.P., Burridge, K. and Kreft, B. (2000) p120 Catenin Regulates the Actin Cytoskeleton via Rho Family GTPases. Journal of Cell Biology, 150, 567-580.
http://dx.doi.org/10.1083/jcb.150.3.567
[30] Anastasiadis, P.Z., Moon, S.Y., Thoreson, M.A., Mariner, D.J., Crawford, H.C., Zheng, Y. and Reynolds, A.B. (2000) Inhibition of RhoA by p120 Catenin. Nature Cell Biology, 2, 637-644.
http://dx.doi.org/10.1038/35023588
[31] Grosheva, I., Shtutman, M., Elbaum, M. and Bershadsky, A.D. (2001) p120 Catenin Affects Cell Motility via Modulation of Activity of Rho-Family GTPases: A Link between Cell-Cell Contact Formation and Regulation of Cell Locomotion. Journal of Cell Science, 114, 695-707.
[32] Zanetti, A., Lampugnani, M.G., Balconi, G., Breviario, F., Corada, M., Lanfrancone, L. and Dejana, E. (2002) Vascular Endothelial Growth Factor Induces Shc Association with Vascular Endothelial Cadherin: A Potential Feedback Mechanism to Control Vascular Endothelial Growth Factor Receptor-2 Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 617-622.
http://dx.doi.org/10.1161/01.ATV.0000012268.84961.AD
[33] Baumeister, U., Funke, R., Ebnet, K., Vorschmitt, H., Koch, S. and Vestweber, D. (2005) Association of Csk to VE-Cadherin and Inhibition of Cell Proliferation. EMBO Journal, 24, 1686-1695.
http://dx.doi.org/10.1038/sj.emboj.7600647
[34] Nawroth, R., Poell, G., Ranft, A., Kloep, S., Samulowitz, U., Fachinger, G., Golding, M., Shima, D.T., Deutsch, U. and Vestweber, D. (2002) VE-PTP and VE-Cadherin Ectodomains Interact to Facilitate Regulation of Phosphorylation and Cell Contacts. EMBO Journal, 21, 4885-4895.
http://dx.doi.org/10.1093/emboj/cdf497
[35] Schrader, A.M., Camden, J.M. and Weisman, G.A. (2005) P2Y2 Nucleotide Receptor Up-Regulation in Submandibular Gland Cells from the NOD.B10 Mouse Model of Sjogren’s Syndrome. Archives of Oral Biology, 50, 533-540.
http://dx.doi.org/10.1016/j.archoralbio.2004.11.005
[36] Mao, X., Kim, B.E., Wang, F., Eide, D.J. and Petris, M.J. (2007) A Histidine-Rich Cluster Mediates the Ubiquitination and Degradation of the Human Zinc Transporter, hZIP4, and Protects against Zinc Cytotoxicity. Journal of Biological Chemistry, 282, 6992-7000.
http://dx.doi.org/10.1074/jbc.M610552200
[37] Lampugnani, M.G., Orsenigo, F., Gagliani, M.C., Tacchetti, C. and Dejana, E. (2006) Vascular Endothelial Cadherin Controls VEGFR-2 Internalization and Signaling from Intracellular Compartments. Journal of Cell Biology, 174, 593-604.
http://dx.doi.org/10.1083/jcb.200602080
[38] Esser, S., Lampugnani, M.G., Corada, M., Dejana, E. and Risau, W. (1998) Vascular Endothelial Growth Factor Induces VE-Cadherin Tyrosine Phosphorylation in Endothelial Cells. Journal of Cell Science, 111, 1853-1865.
[39] Grazia Lampugnani, M., Zanetti, A., Corada, M., Takahashi, T., Balconi, G., Breviario, F., Orsenigo, F., Cattelino, A., Kemler, R., Daniel, T.O. and Dejana, E. (2003) Contact Inhibition of VEGF-Induced Proliferation Requires Vascular Endothelial Cadherin, Beta-Catenin, and the Phosphatase DEP-1/CD148. Journal of Cell Biology, 161, 793-804.
http://dx.doi.org/10.1083/jcb.200209019
[40] Iyer, S., Ferreri, D.M., DeCocco, N.C., Minnear, F.L. and Vincent, P.A. (2004) VE-Cadherin-p120 Interaction Is Required for Maintenance of Endothelial Barrier Function. American Journal of Physiology: Lung Cellular and Molecular Physiology, 286, L1143-L1153.
http://dx.doi.org/10.1152/ajplung.00305.2003
[41] Kukulski, F., Ben Yebdri, F., Bahrami, F., Fausther, M., Tremblay, A. and Sevigny, J. (2010) Endothelial P2Y2 Receptor Regulates LPS-Induced Neutrophil Transendothelial Migration in Vitro. Molecular Immunology, 47, 991-999.
http://dx.doi.org/10.1016/j.molimm.2009.11.020
[42] van Buul, J.D. and Hordijk, P.L. (2004) Signaling in Leukocyte Transendothelial Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 824-833.
http://dx.doi.org/10.1161/01.ATV.0000122854.76267.5c
[43] Huang, A.J., Manning, J.E., Bandak, T.M., Ratau, M.C., Hanser, K.R. and Silverstein, S.C. (1993) Endothelial Cell Cytosolic Free Calcium Regulates Neutrophil Migration across Monolayers of Endothelial Cells. Journal of Cell Biology, 120, 1371-1380.
http://dx.doi.org/10.1083/jcb.120.6.1371
[44] Vestweber, D. (2007) Adhesion and Signaling Molecules Controlling the Transmigration of Leukocytes through Endothelium. Immunological Reviews, 218, 178-196.
http://dx.doi.org/10.1111/j.1600-065X.2007.00533.x
[45] Muller, W.A. (2009) Mechanisms of Transendothelial Migration of Leukocytes. Circulation Research, 105, 223-230.
http://dx.doi.org/10.1161/CIRCRESAHA.109.200717
[46] Dejana, E., Orsenigo, F. and Lampugnani, M.G. (2008) The Role of Adherens Junctions and VE-Cadherin in the Control of Vascular Permeability. Journal of Cell Science, 121, 2115-2122.
http://dx.doi.org/10.1242/jcs.017897
[47] Giannotta, M., Trani, M. and Dejana, E. (2013) VE-Cadherin and Endothelial Adherens Junctions: Active Guardians of Vascular Integrity. Developmental Cell, 26, 441-454.
http://dx.doi.org/10.1016/j.devcel.2013.08.020
[48] Fernandez-Borja, M., van Buul, J.D. and Hordijk, P.L. (2010) The Regulation of Leucocyte Transendothelial Migration by Endothelial Signalling Events. Cardiovascular Research, 86, 202-210.
http://dx.doi.org/10.1093/cvr/cvq003
[49] Gavard, J. and Gutkind, J.S. (2006) VEGF Controls Endothelial-Cell Permeability by Promoting the Beta-Arrestin- Dependent Endocytosis of VE-Cadherin. Nature Cell Biology, 8, 1223-1234.
http://dx.doi.org/10.1038/ncb1486
[50] Schulz, B., Pruessmeyer, J., Maretzky, T., Ludwig, A., Blobel, C.P., Saftig, P. and Reiss, K. (2008) ADAM10 Regulates Endothelial Permeability and T-Cell Transmigration by Proteolysis of Vascular Endothelial Cadherin. Circulation Research, 102, 1192-1201.
http://dx.doi.org/10.1161/CIRCRESAHA.107.169805
[51] Wessel, F., Winderlich, M., Holm, M., Frye, M., Rivera-Galdos, R., Vockel, M., Linnepe, R., Ipe, U., Stadtmann, A., Zarbock, A., Nottebaum, A.F. and Vestweber, D. (2014) Leukocyte Extravasation and Vascular Permeability Are each Controlled in Vivo by Different Tyrosine Residues of VE-Cadherin. Nature Immunology, 15, 223-230.
http://dx.doi.org/10.1038/ni.2824
[52] Hebda, J.K., Leclair, H.M., Azzi, S., Roussel, C., Scott, M.G., Bidere, N. and Gavard, J. (2013) The C-Terminus Region of Beta-Arrestin1 Modulates VE-Cadherin Expression and Endothelial Cell Permeability. Cell Communication Signaling, 11, 37.
http://dx.doi.org/10.1186/1478-811X-11-37
[53] Ratchford, A.M., Baker, O.J., Camden, J.M., Rikka, S., Petris, M.J., Seye, C.I., Erb, L. and Weisman, G.A. (2010) P2Y2 Nucleotide Receptors Mediate Metalloprotease-Dependent Phosphorylation of Epidermal Growth Factor Receptor and ErbB3 in Human Salivary Gland Cells. Journal of Biological Chemistry, 285, 7545-7555.
http://dx.doi.org/10.1074/jbc.M109.078170
[54] Korczynski, J., Sobierajska, K., Krzeminski, P., Wasik, A., Wypych, D., Pomorski, P. and Klopocka, W. (2011) Is MLC Phosphorylation Essential for the Recovery from ROCK Inhibition in Glioma C6 Cells? Acta biochimica Polonica, 58, 125-130.
[55] Kaczmarek, E., Erb, L., Koziak, K., Jarzyna, R., Wink, M.R., Guckelberger, O., Blusztajn, J.K., Trinkaus-Randall, V., Weisman, G.A. and Robson, S.C. (2005) Modulation of Endothelial Cell Migration by Extracellular Nucleotides: Involvement of Focal Adhesion Kinase and Phosphatidylinositol 3-Kinase-Mediated Pathways. Thrombosis and Haemostasis, 93, 735-742.
[56] Seye, C.I., Agca, Y., Agca, C. and Derbigny, W. (2012) P2Y2 Receptor-Mediated Lymphotoxin-Alpha Secretion Regulates Intercellular Cell Adhesion Molecule-1 Expression in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 287, 10535-10543.
http://dx.doi.org/10.1074/jbc.M111.313189
[57] Haidari, M., Zhang, W., Chen, Z., Ganjehei, L., Warier, N., Vanderslice, P. and Dixon, R. (2011) Myosin Light Chain Phosphorylation Facilitates Monocyte Transendothelial Migration by Dissociating Endothelial Adherens Junctions. Cardiovascular Research, 92, 456-465.
http://dx.doi.org/10.1093/cvr/cvr240
[58] Chen, X.L., Nam, J.O., Jean, C., Lawson, C., Walsh, C.T., Goka, E., Lim, S.T., Tomar, A., Tancioni, I., Uryu, S., Guan, J.L., Acevedo, L.M., Weis, S.M., Cheresh, D.A. and Schlaepfer, D.D. (2012) VEGF-Induced Vascular Permeability Is Mediated by FAK. Developmental Cell, 22, 146-157.
http://dx.doi.org/10.1016/j.devcel.2011.11.002
[59] Allingham, M.J., van Buul, J.D. and Burridge, K. (2007) ICAM-1-Mediated, Src- and Pyk2-Dependent Vascular Endothelial Cadherin Tyrosine Phosphorylation Is Required for Leukocyte Transendothelial Migration. Journal of Immunology, 179, 4053-4064.
http://dx.doi.org/10.4049/jimmunol.179.6.4053
[60] Nelson, C.M. and Chen, C.S. (2003) VE-Cadherin Simultaneously Stimulates and Inhibits Cell Proliferation by Altering Cytoskeletal Structure and Tension. Journal of Cell Science, 116, 3571-3581.
http://dx.doi.org/10.1242/jcs.00680
[61] Ferber, A., Yaen, C., Sarmiento, E. and Martinez, J. (2002) An Octapeptide in the Juxtamembrane Domain of VE-Cadherin Is Important for p120ctn Binding and Cell Proliferation. Experimental Cell Research, 274, 35-44.
http://dx.doi.org/10.1006/excr.2001.5436
[62] Chen, J., Shao, C., Lu, W., Yan, C., Yao, Q., Zhu, M., Chen, P., Gu, P., Fu, Y. and Fan, X. (2014) Adenosine Triphosphate-Induced Rabbit Corneal Endothelial Cell Proliferation in Vitro via the P2Y2-PI3K/Akt Signaling Axis. Cells, Tissues, Organs, 199, 131-139.
http://dx.doi.org/10.1159/000365654
[63] Shay-Salit, A., Shushy, M., Wolfovitz, E., Yahav, H., Breviario, F., Dejana, E. and Resnick, N. (2002) VEGF Receptor 2 and the Adherens Junction as a Mechanical Transducer in Vascular Endothelial Cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 9462-9467.
http://dx.doi.org/10.1073/pnas.142224299
[64] Bodin, P. and Burnstock, G. (2001) Evidence that Release of Adenosine Triphosphate from Endothelial Cells during Increased Shear Stress Is Vesicular. Journal of Cardiovascular Pharmacology, 38, 900-908.
http://dx.doi.org/10.1097/00005344-200112000-00012
[65] Wang, Y., Jin, G., Miao, H., Li, J.Y., Usami, S. and Chien, S. (2006) Integrins Regulate VE-Cadherin and Catenins: Dependence of This Regulation on Src, but Not on Ras. Proceedings of the National Academy of Sciences of the United States of America, 103, 1774-1779.
http://dx.doi.org/10.1073/pnas.0510774103
[66] Erb, L., Liu, J., Ockerhausen, J., Kong, Q., Garrad, R.C., Griffin, K., Neal, C., Krugh, B., Santiago-Perez, L.I., Gonzalez, F.A., Gresham, H.D., Turner, J.T. and Weisman, G.A. (2001) An RGD Sequence in the P2Y2 Receptor Interacts with αvβ3 Integrins and Is Required for Go-Mediated Signal Transduction. Journal of Cell Biology, 153, 491-501.
http://dx.doi.org/10.1083/jcb.153.3.491
[67] Wojciak-Stothard, B., Potempa, S., Eichholtz, T. and Ridley, A.J. (2001) Rho and Rac but Not Cdc42 Regulate Endothelial Cell Permeability. Journal of Cell Science, 114, 1343-1355.
[68] van Wetering, S., van den Berk, N., van Buul, J.D., Mul, F.P., Lommerse, I., Mous, R., ten Klooster, J.P., Zwaginga, J.J. and Hordijk, P.L. (2003) VCAM-1-Mediated Rac Signaling Controls Endothelial Cell-Cell Contacts and Leukocyte Transmigration. American Journal of Physiology: Cell Physiology, 285, C343-352.
http://dx.doi.org/10.1152/ajpcell.00048.2003               eww150105lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...