The P2Y2 Receptor Interacts with VE-Cadherin and VEGF Receptor-2 to Regulate Rac1 Activity in Endothelial Cells
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52829#.VKn7EcnQrzE
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52829#.VKn7EcnQrzE
Author(s)
1Department of Medicine, University of California, San Diego, USA.
2Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, USA.
3Department of Biomedical Sciences, Missouri State University, Springfield, USA.
4Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA.
5School of Dentistry, University of Utah, Salt Lake City, USA.
2Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, USA.
3Department of Biomedical Sciences, Missouri State University, Springfield, USA.
4Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA.
5School of Dentistry, University of Utah, Salt Lake City, USA.
Vascular endothelial
cadherin (VE-cadherin) mediates homophylic adhesion between endothelial cells
and is an important regulator of angiogenesis, blood vessel permeability and
leukocyte trafficking. Rac1, a member of the Rho family of GTPases, controls
VE-cadherin adhesion by acting downstream of several growth factors, including
angiopoietin-1 and vascular endothelial growth factor (VEGF). Here we show that
UTP-induced activation of the Gq protein-coupled P2Y2 nucleotide receptor (P2Y2R) in human coronary artery endothelial
cells (HCAECs) activated Rac1 and caused a transient complex to form between
P2Y2R, VE-cadherin and VEGF receptor-2 (VEGFR-2). Knockdown of
VE-cadherin expression with siRNA did not affect UTP-induced activation of extracellular
signal-regulated kinases 1/2 (ERK1/2) but led to a loss of UTP-induced Rac1
activation and tyrosine phosphorylation of p120 catenin, a cytoplasmic protein
known to interact with VE- cadherin. Activation of the P2Y2R by UTP
also caused a prolonged interaction between p120 catenin and vav2 (a guanine
nucleotide exchange factor for Rac) that correlated with the kinetics of
UTP-induced tyrosine phosphorylation of p120 catenin and VE-cadherin. Inhibitors
of VEGFR-2 (SU1498) or Src (PP2) significantly diminished UTP-induced Rac1
activation, tyrosine phosphorylation of p120 catenin and VE-cadherin, and
association of the P2Y2R with VE-cadherin and p120 catenin with
vav2. These findings suggest that the P2Y2R uses Src and VEGFR-2 to
mediate association of the P2Y2R with VE-cadherin complexes in
endothelial adherens junctions to activate Rac1.
KEYWORDS
Cite this paper
Liao, Z. , Cao, C. , Wang, J. , Huxley, V. , Baker, O. , Weisman, G. and Erb, L. (2014) The P2Y2 Receptor Interacts with VE-Cadherin and VEGF Receptor-2 to Regulate Rac1 Activity in Endothelial Cells. Journal of Biomedical Science and Engineering, 7, 1105-1121. doi: 10.4236/jbise.2014.714109.
[1] |
Mehta, D. and Malik, A.B. (2006)
Signaling Mechanisms Regulating Endothelial Permeability. Physiological
Reviews, 86, 279-367. http://dx.doi.org/10.1152/physrev.00012.2005 |
[2] |
Wojciak-Stothard, B. and Ridley,
A.J. (2002) Rho GTPases and the Regulation of Endothelial Permeability.
Vascular Pharmacology, 39, 187-199. http://dx.doi.org/10.1016/S1537-1891(03)00008-9 |
[3] |
Spindler, V., Schlegel, N. and
Waschke, J. (2010) Role of GTPases in Control of Microvascular
Permeability. Cardiovascular Research, 87, 243-253. http://dx.doi.org/10.1093/cvr/cvq086 |
[4] |
Beckers, C.M., van Hinsbergh,
V.W. and van Nieuw Amerongen, G.P. (2010) Driving Rho GTPase Activity in
Endothelial Cells Regulates Barrier Integrity. Thrombosis and
Haemostasis, 103, 40-55. http://dx.doi.org/10.1160/TH09-06-0403 |
[5] | Harvey, J., Erb, L., Huxley, V., Weisman, G.A., Garrad, R. and Wang, J. (2012) P2Y2 Receptor Dependent Modulation of Microvascular Barrier Function. FASEB Journal, 26, Abstract 855.4. |
[6] |
Seye, C.I., Kong, Q., Erb, L.,
Garrad, R.C., Krugh, B., Wang, M., Turner, J.T., Sturek, M., Gonzalez,
F.A. and Weisman, G.A. (2002) Functional P2Y2 Nucleotide Receptors
Mediate Uridine 5'-Triphosphate-Induced Intimal Hyperplasia in Collared
Rabbit Carotid Arteries. Circulation, 106, 2720-2726. http://dx.doi.org/10.1161/01.CIR.0000038111.00518.35 |
[7] |
Chen, Y., Corriden, R., Inoue,
Y., Yip, L., Hashiguchi, N., Zinkernagel, A., Nizet, V., Insel, P.A. and
Junger, W.G. (2006) ATP Release Guides Neutrophil Chemotaxis via P2Y2
and A3 Receptors. Science, 314, 1792-1795. http://dx.doi.org/10.1126/science.1132559 |
[8] |
Muller, T., Robaye, B., Vieira,
R.P., Ferrari, D., Grimm, M., Jakob, T., Martin, S.F., Di Virgilio, F.,
Boeynaems, J.M., Virchow, J.C. and Idzko, M. (2010) The Purinergic
Receptor P2Y2 Receptor Mediates Chemotaxis of Dendritic Cells and
Eosinophils in Allergic Lung Inflammation. Allergy, 65, 1545-1553. http://dx.doi.org/10.1111/j.1398-9995.2010.02426.x |
[9] |
Cicko, S., Lucattelli, M.,
Muller, T., Lommatzsch, M., De Cunto, G., Cardini, S., Sundas, W.,
Grimm, M., Zeiser, R., Durk, T., Zissel, G., Boeynaems, J.M., Sorichter,
S., Ferrari, D., Di Virgilio, F., Virchow, J.C., Lungarella, G. and
Idzko, M. (2010) Purinergic Receptor Inhibition Prevents the Development
of Smoke-Induced Lung Injury and Emphysema. Journal of Immunology, 185,
688-697. http://dx.doi.org/10.4049/jimmunol.0904042 |
[10] |
Agca, C., Seye, C., Kashuba
Benson, C.M., Rikka, S., Chan, A.W., Weisman, G.A. and Agca, Y. (2009)
Development of a Novel Transgenic Rat Overexpressing the P2Y2 Nucleotide
Receptor Using a Lentiviral Vector. Journal of Vascular Research, 46,
447-458. http://dx.doi.org/10.1159/000194274 |
[11] |
Ajit, D., Woods, L.T., Camden,
J.M., Thebeau, C.N., El-Sayed, F.G., Greeson, G.W., Erb, L., Petris,
M.J., Miller, D.C., Sun, G.Y. and Weisman, G.A. (2014) Loss of P2Y2
Nucleotide Receptors Enhances Early Pathology in the TgCRND8 Mouse Model
of Alzheimer’s Disease. Molecular Neurobiology, 49, 1031-1042. http://dx.doi.org/10.1007/s12035-013-8577-5 |
[12] |
Schumacher, D., Strilic, B.,
Sivaraj, K.K., Wettschureck, N. and Offermanns, S. (2013)
Platelet-Derived Nucleotides Promote Tumor-Cell Transendothelial
Migration and Metastasis via P2Y2 Receptor. Cancer Cell, 24, 130-137. http://dx.doi.org/10.1016/j.ccr.2013.05.008 |
[13] |
Liao, Z., Seye, C.I., Weisman,
G.A. and Erb, L. (2007) The P2Y2 Nucleotide Receptor Requires
Interaction with αv Integrins to Access and Activate G12. Journal of
Cell Science, 120, 1654-1662. http://dx.doi.org/10.1242/jcs.03441 |
[14] |
Bagchi, S., Liao, Z., Gonzalez,
F.A., Chorna, N.E., Seye, C.I., Weisman, G.A. and Erb, L. (2005) The
P2Y2 Nucleotide Receptor Interacts with αv Integrins to Activate Go and
Induce Cell Migration. Journal of Biological Chemistry, 280,
39050-39057. http://dx.doi.org/10.1074/jbc.M504819200 |
[15] |
Liu, J., Liao, Z., Camden, J.,
Griffin, K.D., Garrad, R.C., Santiago-Perez, L.I., Gonzalez, F.A., Seye,
C.I., Weisman, G.A. and Erb, L. (2004) Src Homology 3 Binding Sites in
the P2Y2 Nucleotide Receptor Interact with Src and Regulate Activities
of Src, Proline-Rich Tyrosine Kinase 2, and Growth Factor Receptors.
Journal of Biological Chemistry, 279, 8212-8218. http://dx.doi.org/10.1074/jbc.M312230200 |
[16] |
Seye, C.I., Yu, N., Gonzalez,
F.A., Erb, L. and Weisman, G.A. (2004) The P2Y2 Nucleotide Receptor
Mediates Vascular Cell Adhesion Molecule-1 Expression through
Interaction with VEGF Receptor-2 (KDR/Flk-1). Journal of Biological
Chemistry, 279, 35679-35686. http://dx.doi.org/10.1074/jbc.M401799200 |
[17] |
Wheelock, M.J. and Johnson, K.R.
(2003) Cadherin-Mediated Cellular Signaling. Current Opinion in Cell
Biology, 15, 509-514. http://dx.doi.org/10.1016/S0955-0674(03)00101-7 |
[18] |
Breviario, F., Caveda, L.,
Corada, M., Martin-Padura, I., Navarro, P., Golay, J., Introna, M.,
Gulino, D., Lampugnani, M.G. and Dejana, E. (1995) Functional Properties
of Human Vascular Endothelial Cadherin (7B4/Cadherin-5), an
Endothelium-Specific Cadherin. Arteriosclerosis, Thrombosis, and
Vascular Biology, 15, 1229-1239. http://dx.doi.org/10.1161/01.ATV.15.8.1229 |
[19] |
Corada, M., Mariotti, M.,
Thurston, G., Smith, K., Kunkel, R., Brockhaus, M., Lampugnani, M.G.,
Martin-Padura, I., Stoppacciaro, A., Ruco, L., McDonald, D.M., Ward,
P.A. and Dejana, E. (1999) Vascular Endothelial-Cadherin Is an Important
Determinant of Microvascular Integrity in Vivo. Proceedings of the
National Academy of Sciences of the United States of America, 96,
9815-9820. http://dx.doi.org/10.1073/pnas.96.17.9815 |
[20] | Matsuyoshi, N., Toda, K., Horiguchi, Y., Tanaka, T., Nakagawa, S., Takeichi, M. and Imamura, S. (1997) In Vivo Evidence of the Critical Role of Cadherin-5 in Murine Vascular Integrity. Proceedings of the Association of American Physicians, 109, 362-371. |
[21] | Gotsch, U., Borges, E., Bosse, R., Boggemeyer, E., Simon, M., Mossmann, H. and Vestweber, D. (1997) VE-Cadherin Antibody Accelerates Neutrophil Recruitment in Vivo. Journal of Cell Science, 110, 583-588. |
[22] |
Dejana, E., Bazzoni, G. and
Lampugnani, M.G. (1999) Vascular Endothelial (VE)-Cadherin: Only an
Intercellular Glue? Experimental Cell Research, 252, 13-19. http://dx.doi.org/10.1006/excr.1999.4601 |
[23] |
Carmeliet, P., Lampugnani, M.G.,
Moons, L., Breviario, F., Compernolle, V., Bono, F., Balconi, G.,
Spagnuolo, R., Oostuyse, B., Dewerchin, M., Zanetti, A., Angellilo, A.,
Mattot, V., Nuyens, D., Lutgens, E., Clotman, F., de Ruiter, M.C.,
Gittenberger-de Groot, A., Poelmann, R., Lupu, F., Herbert, J.M.,
Collen, D. and Dejana, E. (1999) Targeted Deficiency or Cytosolic
Truncation of the VE-Cadherin Gene in Mice Impairs VEGF-Mediated
Endothelial Survival and Angiogenesis. Cell, 98, 147-157. http://dx.doi.org/10.1016/S0092-8674(00)81010-7 |
[24] | Gory-Faure, S., Prandini, M.H., Pointu, H., Roullot, V., Pignot-Paintrand, I., Vernet, M. and Huber, P. (1999) Role of Vascular Endothelial-Cadherin in Vascular Morphogenesis. Development, 126, 2093-2102. |
[25] | Zanetta, L., Corada, M., Grazia Lampugnani, M., Zanetti, A., Breviario, F., Moons, L., Carmeliet, P., Pepper, M.S. and Dejana, E. (2005) Downregulation of Vascular Endothelial-Cadherin Expression Is Associated with an Increase in Vascular Tumor Growth and Hemorrhagic Complications. Thrombosis and Haemostasis, 93, 1041-1046. |
[26] |
Rahimi, N. and Kazlauskas, A.
(1999) A Role for Cadherin-5 in Regulation of Vascular Endothelial
Growth Factor Receptor 2 Activity in Endothelial Cells. Molecular
Biology of the Cell, 10, 3401-3407. http://dx.doi.org/10.1091/mbc.10.10.3401 |
[27] |
Lampugnani, M.G., Zanetti, A.,
Breviario, F., Balconi, G., Orsenigo, F., Corada, M., Spagnuolo, R.,
Betson, M., Braga, V. and Dejana, E. (2002) VE-Cadherin Regulates
Endothelial Actin Activating Rac and Increasing Membrane Association of
Tiam. Molecular Biology of the Cell, 13, 1175-1189. http://dx.doi.org/10.1091/mbc.01-07-0368 |
[28] |
Vincent, P.A., Xiao, K.,
Buckley, K.M. and Kowalczyk, A.P. (2004) VE-Cadherin: Adhesion at Arm’s
Length. American Journal of Physiology: Cell Physiology, 286, C987-C997.
http://dx.doi.org/10.1152/ajpcell.00522.2003 |
[29] |
Noren, N.K., Liu, B.P.,
Burridge, K. and Kreft, B. (2000) p120 Catenin Regulates the Actin
Cytoskeleton via Rho Family GTPases. Journal of Cell Biology, 150,
567-580. http://dx.doi.org/10.1083/jcb.150.3.567 |
[30] |
Anastasiadis, P.Z., Moon, S.Y.,
Thoreson, M.A., Mariner, D.J., Crawford, H.C., Zheng, Y. and Reynolds,
A.B. (2000) Inhibition of RhoA by p120 Catenin. Nature Cell Biology, 2,
637-644. http://dx.doi.org/10.1038/35023588 |
[31] | Grosheva, I., Shtutman, M., Elbaum, M. and Bershadsky, A.D. (2001) p120 Catenin Affects Cell Motility via Modulation of Activity of Rho-Family GTPases: A Link between Cell-Cell Contact Formation and Regulation of Cell Locomotion. Journal of Cell Science, 114, 695-707. |
[32] |
Zanetti, A., Lampugnani, M.G.,
Balconi, G., Breviario, F., Corada, M., Lanfrancone, L. and Dejana, E.
(2002) Vascular Endothelial Growth Factor Induces Shc Association with
Vascular Endothelial Cadherin: A Potential Feedback Mechanism to Control
Vascular Endothelial Growth Factor Receptor-2 Signaling.
Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 617-622. http://dx.doi.org/10.1161/01.ATV.0000012268.84961.AD |
[33] |
Baumeister, U., Funke, R.,
Ebnet, K., Vorschmitt, H., Koch, S. and Vestweber, D. (2005) Association
of Csk to VE-Cadherin and Inhibition of Cell Proliferation. EMBO
Journal, 24, 1686-1695. http://dx.doi.org/10.1038/sj.emboj.7600647 |
[34] |
Nawroth, R., Poell, G., Ranft,
A., Kloep, S., Samulowitz, U., Fachinger, G., Golding, M., Shima, D.T.,
Deutsch, U. and Vestweber, D. (2002) VE-PTP and VE-Cadherin Ectodomains
Interact to Facilitate Regulation of Phosphorylation and Cell Contacts.
EMBO Journal, 21, 4885-4895. http://dx.doi.org/10.1093/emboj/cdf497 |
[35] |
Schrader, A.M., Camden, J.M. and
Weisman, G.A. (2005) P2Y2 Nucleotide Receptor Up-Regulation in
Submandibular Gland Cells from the NOD.B10 Mouse Model of Sjogren’s
Syndrome. Archives of Oral Biology, 50, 533-540. http://dx.doi.org/10.1016/j.archoralbio.2004.11.005 |
[36] |
Mao, X., Kim, B.E., Wang, F.,
Eide, D.J. and Petris, M.J. (2007) A Histidine-Rich Cluster Mediates the
Ubiquitination and Degradation of the Human Zinc Transporter, hZIP4,
and Protects against Zinc Cytotoxicity. Journal of Biological Chemistry,
282, 6992-7000. http://dx.doi.org/10.1074/jbc.M610552200 |
[37] |
Lampugnani, M.G., Orsenigo, F.,
Gagliani, M.C., Tacchetti, C. and Dejana, E. (2006) Vascular Endothelial
Cadherin Controls VEGFR-2 Internalization and Signaling from
Intracellular Compartments. Journal of Cell Biology, 174, 593-604. http://dx.doi.org/10.1083/jcb.200602080 |
[38] | Esser, S., Lampugnani, M.G., Corada, M., Dejana, E. and Risau, W. (1998) Vascular Endothelial Growth Factor Induces VE-Cadherin Tyrosine Phosphorylation in Endothelial Cells. Journal of Cell Science, 111, 1853-1865. |
[39] |
Grazia Lampugnani, M., Zanetti,
A., Corada, M., Takahashi, T., Balconi, G., Breviario, F., Orsenigo, F.,
Cattelino, A., Kemler, R., Daniel, T.O. and Dejana, E. (2003) Contact
Inhibition of VEGF-Induced Proliferation Requires Vascular Endothelial
Cadherin, Beta-Catenin, and the Phosphatase DEP-1/CD148. Journal of Cell
Biology, 161, 793-804. http://dx.doi.org/10.1083/jcb.200209019 |
[40] |
Iyer, S., Ferreri, D.M.,
DeCocco, N.C., Minnear, F.L. and Vincent, P.A. (2004) VE-Cadherin-p120
Interaction Is Required for Maintenance of Endothelial Barrier Function.
American Journal of Physiology: Lung Cellular and Molecular Physiology,
286, L1143-L1153. http://dx.doi.org/10.1152/ajplung.00305.2003 |
[41] |
Kukulski, F., Ben Yebdri, F.,
Bahrami, F., Fausther, M., Tremblay, A. and Sevigny, J. (2010)
Endothelial P2Y2 Receptor Regulates LPS-Induced Neutrophil
Transendothelial Migration in Vitro. Molecular Immunology, 47, 991-999. http://dx.doi.org/10.1016/j.molimm.2009.11.020 |
[42] |
van Buul, J.D. and Hordijk, P.L.
(2004) Signaling in Leukocyte Transendothelial Migration.
Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 824-833. http://dx.doi.org/10.1161/01.ATV.0000122854.76267.5c |
[43] |
Huang, A.J., Manning, J.E.,
Bandak, T.M., Ratau, M.C., Hanser, K.R. and Silverstein, S.C. (1993)
Endothelial Cell Cytosolic Free Calcium Regulates Neutrophil Migration
across Monolayers of Endothelial Cells. Journal of Cell Biology, 120,
1371-1380. http://dx.doi.org/10.1083/jcb.120.6.1371 |
[44] |
Vestweber, D. (2007) Adhesion
and Signaling Molecules Controlling the Transmigration of Leukocytes
through Endothelium. Immunological Reviews, 218, 178-196. http://dx.doi.org/10.1111/j.1600-065X.2007.00533.x |
[45] |
Muller, W.A. (2009) Mechanisms
of Transendothelial Migration of Leukocytes. Circulation Research, 105,
223-230. http://dx.doi.org/10.1161/CIRCRESAHA.109.200717 |
[46] |
Dejana, E., Orsenigo, F. and
Lampugnani, M.G. (2008) The Role of Adherens Junctions and VE-Cadherin
in the Control of Vascular Permeability. Journal of Cell Science, 121,
2115-2122. http://dx.doi.org/10.1242/jcs.017897 |
[47] |
Giannotta, M., Trani, M. and
Dejana, E. (2013) VE-Cadherin and Endothelial Adherens Junctions: Active
Guardians of Vascular Integrity. Developmental Cell, 26, 441-454. http://dx.doi.org/10.1016/j.devcel.2013.08.020 |
[48] |
Fernandez-Borja, M., van Buul,
J.D. and Hordijk, P.L. (2010) The Regulation of Leucocyte
Transendothelial Migration by Endothelial Signalling Events.
Cardiovascular Research, 86, 202-210. http://dx.doi.org/10.1093/cvr/cvq003 |
[49] |
Gavard, J. and Gutkind, J.S.
(2006) VEGF Controls Endothelial-Cell Permeability by Promoting the
Beta-Arrestin- Dependent Endocytosis of VE-Cadherin. Nature Cell
Biology, 8, 1223-1234. http://dx.doi.org/10.1038/ncb1486 |
[50] |
Schulz, B., Pruessmeyer, J.,
Maretzky, T., Ludwig, A., Blobel, C.P., Saftig, P. and Reiss, K. (2008)
ADAM10 Regulates Endothelial Permeability and T-Cell Transmigration by
Proteolysis of Vascular Endothelial Cadherin. Circulation Research, 102,
1192-1201. http://dx.doi.org/10.1161/CIRCRESAHA.107.169805 |
[51] |
Wessel, F., Winderlich, M.,
Holm, M., Frye, M., Rivera-Galdos, R., Vockel, M., Linnepe, R., Ipe, U.,
Stadtmann, A., Zarbock, A., Nottebaum, A.F. and Vestweber, D. (2014)
Leukocyte Extravasation and Vascular Permeability Are each Controlled in
Vivo by Different Tyrosine Residues of VE-Cadherin. Nature Immunology,
15, 223-230. http://dx.doi.org/10.1038/ni.2824 |
[52] |
Hebda, J.K., Leclair, H.M.,
Azzi, S., Roussel, C., Scott, M.G., Bidere, N. and Gavard, J. (2013) The
C-Terminus Region of Beta-Arrestin1 Modulates VE-Cadherin Expression
and Endothelial Cell Permeability. Cell Communication Signaling, 11, 37.
http://dx.doi.org/10.1186/1478-811X-11-37 |
[53] |
Ratchford, A.M., Baker, O.J.,
Camden, J.M., Rikka, S., Petris, M.J., Seye, C.I., Erb, L. and Weisman,
G.A. (2010) P2Y2 Nucleotide Receptors Mediate Metalloprotease-Dependent
Phosphorylation of Epidermal Growth Factor Receptor and ErbB3 in Human
Salivary Gland Cells. Journal of Biological Chemistry, 285, 7545-7555. http://dx.doi.org/10.1074/jbc.M109.078170 |
[54] | Korczynski, J., Sobierajska, K., Krzeminski, P., Wasik, A., Wypych, D., Pomorski, P. and Klopocka, W. (2011) Is MLC Phosphorylation Essential for the Recovery from ROCK Inhibition in Glioma C6 Cells? Acta biochimica Polonica, 58, 125-130. |
[55] | Kaczmarek, E., Erb, L., Koziak, K., Jarzyna, R., Wink, M.R., Guckelberger, O., Blusztajn, J.K., Trinkaus-Randall, V., Weisman, G.A. and Robson, S.C. (2005) Modulation of Endothelial Cell Migration by Extracellular Nucleotides: Involvement of Focal Adhesion Kinase and Phosphatidylinositol 3-Kinase-Mediated Pathways. Thrombosis and Haemostasis, 93, 735-742. |
[56] |
Seye, C.I., Agca, Y., Agca, C.
and Derbigny, W. (2012) P2Y2 Receptor-Mediated Lymphotoxin-Alpha
Secretion Regulates Intercellular Cell Adhesion Molecule-1 Expression in
Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 287,
10535-10543. http://dx.doi.org/10.1074/jbc.M111.313189 |
[57] |
Haidari, M., Zhang, W., Chen,
Z., Ganjehei, L., Warier, N., Vanderslice, P. and Dixon, R. (2011)
Myosin Light Chain Phosphorylation Facilitates Monocyte Transendothelial
Migration by Dissociating Endothelial Adherens Junctions.
Cardiovascular Research, 92, 456-465. http://dx.doi.org/10.1093/cvr/cvr240 |
[58] |
Chen, X.L., Nam, J.O., Jean, C.,
Lawson, C., Walsh, C.T., Goka, E., Lim, S.T., Tomar, A., Tancioni, I.,
Uryu, S., Guan, J.L., Acevedo, L.M., Weis, S.M., Cheresh, D.A. and
Schlaepfer, D.D. (2012) VEGF-Induced Vascular Permeability Is Mediated
by FAK. Developmental Cell, 22, 146-157. http://dx.doi.org/10.1016/j.devcel.2011.11.002 |
[59] |
Allingham, M.J., van Buul, J.D.
and Burridge, K. (2007) ICAM-1-Mediated, Src- and Pyk2-Dependent
Vascular Endothelial Cadherin Tyrosine Phosphorylation Is Required for
Leukocyte Transendothelial Migration. Journal of Immunology, 179,
4053-4064. http://dx.doi.org/10.4049/jimmunol.179.6.4053 |
[60] |
Nelson, C.M. and Chen, C.S.
(2003) VE-Cadherin Simultaneously Stimulates and Inhibits Cell
Proliferation by Altering Cytoskeletal Structure and Tension. Journal of
Cell Science, 116, 3571-3581. http://dx.doi.org/10.1242/jcs.00680 |
[61] |
Ferber, A., Yaen, C., Sarmiento,
E. and Martinez, J. (2002) An Octapeptide in the Juxtamembrane Domain
of VE-Cadherin Is Important for p120ctn Binding and Cell Proliferation.
Experimental Cell Research, 274, 35-44. http://dx.doi.org/10.1006/excr.2001.5436 |
[62] |
Chen, J., Shao, C., Lu, W., Yan,
C., Yao, Q., Zhu, M., Chen, P., Gu, P., Fu, Y. and Fan, X. (2014)
Adenosine Triphosphate-Induced Rabbit Corneal Endothelial Cell
Proliferation in Vitro via the P2Y2-PI3K/Akt Signaling Axis. Cells,
Tissues, Organs, 199, 131-139. http://dx.doi.org/10.1159/000365654 |
[63] |
Shay-Salit, A., Shushy, M.,
Wolfovitz, E., Yahav, H., Breviario, F., Dejana, E. and Resnick, N.
(2002) VEGF Receptor 2 and the Adherens Junction as a Mechanical
Transducer in Vascular Endothelial Cells. Proceedings of the National
Academy of Sciences of the United States of America, 99, 9462-9467. http://dx.doi.org/10.1073/pnas.142224299 |
[64] |
Bodin, P. and Burnstock, G.
(2001) Evidence that Release of Adenosine Triphosphate from Endothelial
Cells during Increased Shear Stress Is Vesicular. Journal of
Cardiovascular Pharmacology, 38, 900-908. http://dx.doi.org/10.1097/00005344-200112000-00012 |
[65] |
Wang, Y., Jin, G., Miao, H., Li,
J.Y., Usami, S. and Chien, S. (2006) Integrins Regulate VE-Cadherin and
Catenins: Dependence of This Regulation on Src, but Not on Ras.
Proceedings of the National Academy of Sciences of the United States of
America, 103, 1774-1779. http://dx.doi.org/10.1073/pnas.0510774103 |
[66] |
Erb, L., Liu, J., Ockerhausen,
J., Kong, Q., Garrad, R.C., Griffin, K., Neal, C., Krugh, B.,
Santiago-Perez, L.I., Gonzalez, F.A., Gresham, H.D., Turner, J.T. and
Weisman, G.A. (2001) An RGD Sequence in the P2Y2 Receptor Interacts with
αvβ3 Integrins and Is Required for Go-Mediated Signal Transduction.
Journal of Cell Biology, 153, 491-501. http://dx.doi.org/10.1083/jcb.153.3.491 |
[67] | Wojciak-Stothard, B., Potempa, S., Eichholtz, T. and Ridley, A.J. (2001) Rho and Rac but Not Cdc42 Regulate Endothelial Cell Permeability. Journal of Cell Science, 114, 1343-1355. |
[68] |
van Wetering, S., van den Berk,
N., van Buul, J.D., Mul, F.P., Lommerse, I., Mous, R., ten Klooster,
J.P., Zwaginga, J.J. and Hordijk, P.L. (2003) VCAM-1-Mediated Rac
Signaling Controls Endothelial Cell-Cell Contacts and Leukocyte
Transmigration. American Journal of Physiology: Cell Physiology, 285,
C343-352. http://dx.doi.org/10.1152/ajpcell.00048.2003 eww150105lx |
评论
发表评论