Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52929#.VKyjCcnQrzE
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52929#.VKyjCcnQrzE
Author(s)
Anamaria Teodora Coêlho Rios Silva, Barbara Camilla Oliveira Cardoso, Maria Elisa Scarpelli Ribeiro e Silva, Roberto Fernando Souza Freitas, Ricardo Geraldo Sousa*
ABSTRACT
The
poly(lactic-co-glycolic acid), known as PLGA, is one of the main
bioreabsorbable polymers used in the field of medicine today. This
copolymer is widely applied in sutures, devices geared toward the
controlled release of medication, and the guided regeneration of bone
tissue as it presents a short degradation time. This work aimed to
synthesize the 82/18 PLGA (expressed by the mass ratio of D,L-lactide
and glycolide, respectively), to characterize and study the in Vitro
degradation in the form of rods in phosphate buffer solution (PBS). The
copolymer was synthesized by opening the cyclic dimer rings of the
monomers D,L-lactide and glycolide, in the presence of the tin octanoate
initiator and of the lauryl alcohol co-initiator. The characterization
of the copolymer and the follow-up of its in vitro degradation were
studied using: Differential Scanning Calorimetry (DSC), Thermogravimetry
(TG), Infrared Molecular Absorption Spectroscopy with Fourier Transform
(FTIR), Rheometry, and Scanning Electron Microscopy (SEM). Through
these characterization techniques, it was possible to obtain the glass
transition temperature, thermal stability, chemical composition,
morphology, and molar mass of both the synthesized and the degraded
copolymer. The molar mass of the synthesized copolymer was,
approximately, 106 g·mol-1. The
degradation rate of PLGA significantly increased from the 19th to the
28th day in PBS. After 28 days in PBS, the glass transition temperature
and the molar mass reduced from 45°C to 17°C and from 1.5 × 106 g·mol-1 to 7.5 × 104 g·mol-1,
respectively. The pH of the medium has a significant influence on the
copolymer degradation profile. When it diminishes, it accelerates the
degradation process, resulting in smaller PLGA polymer chains. This pH
dependent degradation can be useful for drug release systems.
Cite this paper
References
Silva, A. , Cardoso, B. , Silva, M. , Freitas, R. and Sousa, R. (2015) Synthesis, Characterization, and Study of PLGA Copolymer in Vitro Degradation. Journal of Biomaterials and Nanobiotechnology, 6, 8-19. doi: 10.4236/jbnb.2015.61002.
[1] | Ratner, B.D. and Hoffman, A.S. (1996) Biomaterials Science—An Introduction to Materials in Medicine. Elsevier, New York. |
[2] | Langer, R. and Peppas, N.A. (2003) Advances in Biomaterials, Drug Delivery, and Bionanotechnology. Alche Journal, 49, 2990-3006. http://dx.doi.org/10.1002/aic.690491202 |
[3] | Stevanovic,
M., Maksin, T., Petkovic, J, Filipic, M. and Uskokovic, D. (2009) An
Innovative, Quick and Convenient Labeling Method for the Investigation
of Pharmacological Behavior and the Metabolism of
Poly(DL-lactide-coglyco- lide) Nanospheres. Nanotechnology, 20, 1-12. http://dx.doi.org/10.1088/0957-4484/20/33/335102 |
[4] | Hoffman, A.S. (2008) The Origins and Evolution of “Controlled” Drug Delivery Systems. Journal of Controlled Release, 132, 153-163. http://dx.doi.org/10.1016/j.jconrel.2008.08.012 |
[5] | Park,
J.H., Lee, S., Kim, J.H., Park, K., Kim, K. and Kwon, I.C. (2008)
Polymeric Nanomedicine for Cancer Therapy. Progress in Polymer Science,
33, 113-137. http://dx.doi.org/10.1016/j.progpolymsci.2007.09.003 |
[6] | Pamula,
E. and Menaszak, E. (2008) In Vitro and in Vivo Degradation of
Poly(L-lactide-co-glycolide) Films and Scaffolds. Journal of Materials
Science: Materials in Medicine, 19, 2063-2070. http://dx.doi.org/10.1007/s10856-007-3292-2 |
[7] | Duarte, M.A.T., Duek, E.A.R. and Motta, A.C. (2014) In Vitro Degradation of Poly (L-co-D,L lactic acid) Containing PCL-T. Polímeros, 24, 1-8. http://dx.doi.org/10.4322/polimeros.2014.056 |
[8] | Xiaoling, L. and Haskara, R.J. (2006) Design of Controlled Release Drug Delivery Systems. MacGraw-Hill, New York. |
[9] | Stevanovic, M. and Skokovic, D. (2009) Poly(lactide-co-glycolide)-Basedmicro and Nanoparticles for the Controlled Drug Delivery of Vitamins. Current Nanoscience, 5, 1-14. |
[10] | Stevanovic,
M., Radulovic, A., Jordovic, B. and Uskokovic, D. (2008)
Poly(DL-lactide-co-glycolide) Nanospheres for the Sustained Release of
Folic Acid. Journal of Biomedical Nanotechnology, 4, 349-358. http://dx.doi.org/10.1166/jbn.2008.021 |
[11] | Liang,
R.C., Li, X., Shi, Y., Wang, A., Sun, K., Liu, W.H. and Li, Y.X. (2013)
Effect of Water on Exenatide Acylation in Poly(lactide-co-glycolide)
Microspheres. International Journal of Pharmaceutics, 454, 344-353. http://dx.doi.org/10.1016/j.ijpharm.2013.07.012 |
[12] | Meng,
Z.X., Zheng, W., Li, L. and Zheng, Y.F. (2011) Fabrication,
Characterization and in Vitro Drug Release Behavior of Electrospun
PLGA/Chitosan Nanofibrous Scaffold. Materials Chemistry and Physics,
125, 606-611. http://dx.doi.org/10.1016/j.matchemphys.2010.10.010 |
[13] | Rios, M. (2005) Polymers for Controlled Release: Formulation Follows Function. Pharmaceutical Technology, 29, 42-50. |
[14] | Mundargi,
R.C., Babu, V.R., Rangaswamy, V., Patel, P. and Aminabhavi, T.M. (2008)
Nano/Micro Technologies for Delivering Macromolecular Therapeutics
Using Poly(D,L-lactide-co-glycolide) and Its Derivatives. Journal of
Controlled Release, 125, 193-209. http://dx.doi.org/10.1016/j.jconrel.2007.09.013 |
[15] | Cohen-sela, E., Chorny, M., Koroukhov, N., Danenberg, H.D. and Golomb, G. (2009) A New Double Emulsion Solvent Diffusion Technique for Encapsulating Hydrophilic Molecules in PLGA Nanoparticles. Journal of Controlled Release, 133, 90-95. http://dx.doi.org/10.1016/j.jconrel.2008.09.073 |
[16] | Bae,
S.E., Son, J.S., Park, K. and Han, D.K. (2009) Fabrication of Covered
Porous PLGA Microspheres Using Hydrogen Peroxide for Controlled Drug
Delivery and Regenerative Medicine. Journal of Controlled Release, 133,
37-43. http://dx.doi.org/10.1016/j.jconrel.2008.09.006 |
[17] | Jain, R.A. (2000) The Manufacturing Techniques of Various Drug Loaded Biodegradable Poly(lactídeo-co-glicolídeo) (PLGA) Devices. Biomaterials, 21, 2475-2490. http://dx.doi.org/10.1016/S0142-9612(00)00115-0 |
[18] | Soares, A.Q., Oliveira, L.F., Rabelo, D. and Souza, A.R. (2005) Polímeros Biodegradáveis: Novas Perspectivas para as Ciências Farmacêuticas. Revista EletrÔnica de Farmácia, 2, 202-205. |
[19] | Ji, W., Yang, F., Seyednejad, H., Chen, Z., Hennink, W.E., Anderson, J.M., Beucken, J.J.J.P. and Jansen, J. (2012) Biocompatibility and Degradation Characteristics of PLGA-Based Electrospun Nanofibrous Scaffolds with Nanoapatite Incorporation. Biomaterials, 33, 6604-6614. http://dx.doi.org/10.1016/j.biomaterials.2012.06.018 |
[20] | Kang, S.W., Yang, H.S., Seo, S.W., Han, D.K. and Kim, B.S. (2008) Apatite-Coated Poly(lactic-coglycolic Acid) Microspheres as an Injectable Scaffold for Bone Tissue Engineering. Journal of Biomedical Materials Research Part A, 85, 747-756. http://dx.doi.org/10.1002/jbm.a.31572 |
[21] | Qi, F., Wu, J., Yang, T., Ma, G. and Su, Z.G. (2014) Mechanistic Studies for Monodisperse Exenatide-Loaded PLGA Microspheres Prepared by Different Methods Based on SPG Membrane Emulsification. Acta Biomaterialia, 10, 4247- 4256. http://dx.doi.org/10.1016/j.actbio.2014.06.018 |
[22] | Sun, L., Xie, Z., Zhao, Y., Wei, H.M. and Gu, Z.Z. (2013) Optical Monitoring the Degradation of PLGA Inverse Opal Film. Chinese Chemical Letters, 24, 9-12. http://dx.doi.org/10.1016/j.cclet.2013.01.012 |
[23] | Khare,
V., Kour, S., Alam, N., Dubey, R.D., Saneja, A., Koul, M., Gupta, A.P.,
Singh, D., Singh, S., Saxena, A.K. and Gupta, P.N. (2014) Synthesis,
Characterization and Mechanistic-Insight into the Antiproliferative
Potential of PLGA- Gemcitabine Conjugate. International Journal of
Pharmaceutics, 470, 51-62. http://dx.doi.org/10.1016/j.ijpharm.2014.05.005 |
[24] | Athanasiou,
K.A., Niederauer, G.G. and Agrawal, C.M. (1996) Sterilization,
Toxicity, Biocompatibility and Clinical Applications of Polylactic
Acid/Polyglycolic Acid Copolymers. Biomaterials, 17, 93-102. http://dx.doi.org/10.1016/0142-9612(96)85754-1 |
[25] | Lanao,
R.P.F., Leeuwenburgh, S.C.G., Wolke, J.G.C. and Jansen, J.A. (2011)
Bone Response to Fast-Degrading, Injectable Calcium Phosphate Cements
Containing PLGA Microparticles. Biomaterials, 32, 8839-8847. http://dx.doi.org/10.1016/j.biomaterials.2011.08.005 |
[26] | Lanao,
R.P.F., Leeuwenburgh, S.C.G., Wolke, J.G.C. and Jansen, J.A. (2011) In
Vitro Degradation Rate of Apatitic Calcium Phosphate Cement with
Incorporated PLGA Microspheres. Acta Biomaterialia, 7, 3459-3468. http://dx.doi.org/10.1016/j.actbio.2011.05.036 |
[27] | Li,
H. and Chang, J. (2005) pH-Compensation Effect of Bioactive Inorganic
Fillers on the Degradation of PLGA. Composites Science and Technology,
65, 2226-2232. http://dx.doi.org/10.1016/j.compscitech.2005.04.051 |
[28] | Merkli,
A., Tabatabay, C., Gurny, R. and Heller, J. (1998) Biodegradable
Polymers for the Controlled Release of Ocular Drug. Progress in Polymer
Science, 23, 563-580. http://dx.doi.org/10.1016/S0079-6700(97)00048-8 |
[29] | Astete,
C.E. and Sabliov, C.M. (2006) Synthesis and Characterization of PLGA
Nanoparticles. Journal of Biomaterials Science, Polymer Edition, 17,
247-289. http://dx.doi.org/10.1163/156856206775997322 |
[30] | Houchin,
M.L. and Topp, E.M. (2008) Chemical Degradation of Peptides and
Proteins in PLGA: A Review of Reactions and Mechanisms. Journal of
Pharmaceutical Sciences, 97, 2395-2404. http://dx.doi.org/10.1002/jps.21176 |
[31] | Tracy,
M.A., Ward, K.L., Firouzabadian, L., Wang, Y., Dong, N., Qian, R. and
Zhang, Y. (1999) Factors Affecting the Degradation Rate of
Poly(lactide-co-glycolide) Microspheres in Vivo and in Vitro.
Biomaterials, 20, 1057-1062. http://dx.doi.org/10.1016/S0142-9612(99)00002-2 |
[32] | Tsukadaa,
Y., Haraa, K., Bandoa, Y., Huangb, C.C., Kousakaa, Y., Kawashimac, Y.,
Morishitad, R. and Tsujimotoa, H. (2009) Particle Size Control of
Poly(DL-lactide-co-glycolide) Nanospheres for Sterile Applications.
International Journal of Pharmaceutics, 370, 196-201. http://dx.doi.org/10.1016/j.ijpharm.2008.11.019 |
[33] | Xiao,
D., Liu, Q., Wang, D., Xie, T., Guo, T., Duan, K. and Weng, J. (2014)
Room-Temperature Attachment of PLGA Microspheres to Titanium Surfaces
for Implant-Based Drug Release. Applied Surface Science, 309, 112-118. http://dx.doi.org/10.1016/j.apsusc.2014.04.195 |
[34] | Erbetta,
C.D.C., Alves, R.J., Resende, J.M., Freitas, R.F.S. and Sousa, R.G.
(2012) Synthesis and Characterization of Poly(D,L-lactide-co-glycolide)
Copolymer. Journal of Biomaterials and Nanobiotechnology, 3, 208-225. http://dx.doi.org/10.4236/jbnb.2012.32027 |
[35] | kasperczyk, J. (1996) Microstructural Analysis of Poly(l-lactide)-co-(glycolide) by 1H and13 C n.m.r. Spectroscopy. Polymer, 37, 201-203. |
[36] | Maier, D., Eckstein, A., Friedrich, C. and Honerkamp, J. (1998) Evaluation of Models Combining Rheological Data with the Molecular Weight Distribution. Journal of Rheology, 42, 1153-1173. http://dx.doi.org/10.1122/1.550952 |
[37] | Thimm,
W.B., Friedrich, C., Marth, M. and Honerkamp, J. (1999) An Analytical
Relationship between Relaxation Time Spectrum and Molecular Weight
Distribution. Journal of Rheology, 43, 1663-1672. http://dx.doi.org/10.1122/1.551066 eww150107lx |
[38] | Thimm,
W.B., Friedrich, C., Marth, M. and Honerkamp, J. (1999) On the Rouse
Spectrum and the Determination of the Molecular Weight Distribution from
Rheological Data. Journal of Rheology, 44, 429-438. http://dx.doi.org/10.1122/1.551094 |
评论
发表评论