Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53512#.VMcrXizQrzE
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53512#.VMcrXizQrzE
ABSTRACT
It
is widely held that irrational numbers can be represented by infinite
digit-sequences. We will show that this is not possible. A digit
sequence is only an abbreviated notation for an infinite sequence of
rational partial sums. As limits of sequences, irrational numbers are
incommensurable with any grid of decimal fractions.
Cite this paper
References
Mueckenheim, W. (2015) Sequences and Limits. Advances in Pure Mathematics, 5, 59-61. doi: 10.4236/apm.2015.52007.
[1] | Mueckenheim, W. (2011) Mathematik für die ersten Semester. 3rd Edition, Oldenbourg Verlag GmbH, Muenchen, 193. http://www.amazon.de/Mathematik-f%C3%BCr-die-ersten-Semester/dp/348670821X/ref=sr_1_2?s=books&ie=UTF8&qid=1400566108&sr=1-2&keywords=Mathematik+f%C3%BCr+die+ersten+Semester |
[2] | Cantor, G. (1889) Bemerkungen mit Bezug auf den Aufsatz: Zur Weierstra?-Cantorschen Theorie der Irrationalzahlen. Mathematische Annalen, 33, 476. http://dx.doi.org/10.1007/BF01443973 |
[3] | Cantor, G. (1891) über eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht der Deutschen MathematikerVereinigung, 1, 75-78. |
[4] | Mueckenheim,
W. (2008) The Infinite in Sciences and Arts. In: Sriraman, B.,
Michelsen, C., Beckmann, A. and Freiman, V., Eds., Proceedings of the
2nd International Symposium of Mathematics and Its Connections to the
Arts and Sciences (MACAS2), Centre for Science and Mathematics
Education, University of Southern Denmark, Odense,
265-272.
eww150127lx http://static.sdu.dk/mediafiles//Files/Om_SDU/Centre/C_NAMADI/Skriftserie/MACAS_samlet.pdf% |
评论
发表评论