跳至主要内容

pH Dependence of Lead Adsorption on Zeolites

Read  full  paper  at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53236#.VLh228nQrzE

ABSTRACT
The adsorption of Pb on zeolites A4, X, Y and mordenite was studied at various initial pH with the purpose of assessing the pH dependence of Pb adsorption. The adsorption was conducted using 0 - 0.6 mM PbNO3 in the presence of 100 mM NH4NO3 and pH adjustment done using HNO3. The coexisting NH4NO3 served as a representative of other cations available in nature. The study was conducted at initial solution pH ranging from 3 - 5. Adsorption results were analyzed using Langmuir isotherm analysis. Adsorption was noted to be dependent on pH with increasing adsorption as pH increased from 3 - 5 for zeolites A4, X and Y. The adsorption of Pb on mordenite on the other hand did not show any dependence on pH since it was almost constant within the studied pH range. The adsorptive capacities were 2500, 2000, 588 and 179 mmol·kg-1 for A4, X, Y and mordenite, respectively. The results of this study can be used in designing or planning for the clean-up of polluted water using adsorption techniques. An important attribute of these findings was that the samples studied were shown to have the capacity of removing even very low concentration of Pb, a property which is hardly achievable by most adsorbents.
 
Cite this paper
Kabwadza-Corner, P. , Johan, E. and Matsue, N. (2015) pH Dependence of Lead Adsorption on Zeolites. Journal of Environmental Protection, 6, 45-53. doi: 10.4236/jep.2015.61006.
 
References
[1]Schneegurt, M.A., Jain, J.C., Menicucci, J.A., Brown, S.A., Kemner, K.M., Garofalo, D.F., Quallick, M.R., Neal, C.R. and Kulpa, C.F. (2001) Biomass Byproducts for the Remediation of Wastewaters Contaminated with Toxic Metals. Environmental Science & Technology, 35, 3786-3791.
http://dx.doi.org/10.1021/es010766e
 
[2]EPA (Environmental Protection Agency) (1990) Environmental Pollution Control Alternatives, EPA/625/4-90/025, EPA 625/4-89/023, Environmental Protection Agency, Cincinnati.
 
[3]AL-Othman, Z.A., Naushad, M. and Nilchi, A. (2011) Development, Characterisation and Ion Exchange Thermodynamics for a New Crystalline Composite Cation Exchange Material; Application for the Removal of Pb2+ Ion from a Standard Samples (Rompin Hematite). Inorganic and Organomeallic Polymers, 21, 547-559.
http://dx.doi.org/10.1007/s10904-011-9491-9
 
[4]Djedidi, Z., Bouda, M., Souissi, M.A., Cheikh, R.B., Mercier, G., Tyagi, R.D. and Blais, J.F. (2009) Metals Removal from Soil, Fly Ash and Sewage Sludge Leachates by Precipitation and Dewatering Properties of the Generated Sludge. Journal of Hazardous Materials, 172, 1372-1382.
http://dx.doi.org/10.1016/j.jhazmat.2009.07.144
 
[5]Lin, S.W. and Navarro, R.M.F. (1999) An Innovative Method for Removing Hg2+ and Pb in ppm Concentrations from Aqueous Media. Chemosphere, 39, 1809-1817.
http://dx.doi.org/10.1016/S0045-6535(99)00074-0
 
[6]Al Othman, Z.A. and Naushad Inamuddin, M. (2011) Organic-in-Organic Type Composite Cation Exchanger Poly-o-Toluidine Zr(iv) Tungstate: Preparation, Physiochemical Characterization and Its Analytical Application in Separation of Heavy Metals. Journal of Chemical Engineering, 172, 369-375.
 
[7]Aljendeel, H.A. (2011) Removal of Heavy Metals Using Reverse Osmosis. Journal of Engineering, 17, 647-658.
 
[8]O’Connell, D.W., Birkinshaw, C. and O’Dwyer, T.F. (2008) Heavy Metal Adsorbents Prepared from the Modification of Cellulose: A Review. Bioresource Technology, 99, 6709-6724.
http://dx.doi.org/10.1016/j.biortech.2008.01.036
 
[9]Ghaedi, M., Biyareh, M.N., Kokhdan, S.N., Shamsaldini, S.H., Sahraei, R., Daneshfar, A. and Shahriyar, S. (2012) Comparison of the Efficiency of Palladium and Silver Nanoparticles Loaded on Activated Carbon and Zinc Oxide Nano Rods as New Adsorbents for Removal of Congo Red from Aqueous Solution: Kinetic and Isotherm Study. Material Science and Engineering, C32, 725-734.
http://dx.doi.org/10.1016/j.msec.2012.01.015
 
[10]Irani, M.D., Amjadi, M. and Mousavian, A.M.D. (2011) Comparative Study of Lead Sorption onto Natural Perlite, Dolomite and Diatomite. Chemical Engineering Journal, 178, 317-323.
http://dx.doi.org/10.1016/j.cej.2011.10.011
 
[11]Hodi, M., Polyak, K. and Htavay, J. (1995) Removal of Pollutants from Drinking Water by Combined Ion-Exchange and Adsorption Methods. Environment International, 21, 325-331.
http://dx.doi.org/10.1016/0160-4120(95)00019-H
 
[12]Igwe, J.C. and Abia, A.A. (2003) Maize Cob and Husk as Adsorbents for Removal of Cadmium, Lead and Zinc Ions from Wastewater. The Physical Scientist, 2, 210-215.
 
[13]Sun, G. and Shi, W.X. (1998) Sunflower Stalk as Adsorbents for the Removal of Metal Ions from Waste Water. Industrial and Engineering Chemistry Research, 37, 1324-1328.
http://dx.doi.org/10.1021/ie970468j
 
[14]Zouboulis, A.I., Matis, K.A. and Stalidis, G.A. (1992) Flotation Methods and Techniques in Wastewater. In: Mavros, P. and Matis, K.A., Eds., Innovations in Flotation Technology, Kluwer Academic, Dordrecht, 96-104.
 
[15]Mohamed, R., Selim, E.M. and Azaad Faiz, F. (2012) Removal of Some Environmental Pollutants from Aqueous Solutions by Linde-Zeolite: Adsorption and Kinetic Study. The Free Library (1 May).
http://www.thefreelibrary.com/Removal%20of%20some%20environmental
%20pollutants%20from%20aqueous%20solutions%20by...-a0299344558
 
[16]Ribeiro, R.F. (1983) Zeolites: Science and Technology. Martinus Nijhoff Publishers, The Netherlands.
 
[17]Kabwadza-Corner, P., Munthali, M.W., Johan, E. and Matsue, N. (2014) Comparative Study of Copper Adsorptivity and Selectivity toward Zeolites. American Journal of Analytical Chemistry, 5, 395-405.
http://dx.doi.org/10.4236/ajac.2014.57048
 
[18]Hasan, S., Ghosh, T.K., Viswanath, D.S. and Boddu, V.M. (2008) Dispersion of Chitosan on Perlite for Enhancement of Copper(II) Adsorption Capacity. Journal of Hazardous Materials, 152, 826-837.
http://dx.doi.org/10.1016/j.jhazmat.2007.07.078
 
[19]Stefanova, R.Y. (2000) Sorption of Metal Ions from Aqueous Solutions by Thermally Activated Electroplating Sludge. Journal of Environmental Science and Health Part A, 35, 593-607.
 
[20]Zou, W.H., Han, R., Chen, Z., Zhang, J.H. and Shi, J. (2006) Kinetic Study of Adsorption of Cu(II) and Pb(II) from Aqueous Solutions Using Manganese Oxide Coated Zeolite in Batch Mode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279, 238-246.
http://dx.doi.org/10.1016/j.colsurfa.2006.01.008
 
[21]Lee, M., Yi, G., Ahn, B. and Roddick, F. (2000) Conversion of Coal Fly Ash into Zeolite and Heavy Metal Removal Characteristics of the Products. Korean Journal of Chemical Engineering, 17, 325-331.
http://dx.doi.org/10.1007/BF02699048
 
[22]Jha, V.K., Nagae, M., Matsuda, M. and Miyake, M. (2009) Zeolite Formation from Coal Fly Ash and Heavy Metal Ion Removal Characteristics of Thus-Obtained Zeolite X in Multi-Metal Systems. Journal of Environmental Management, 90, 2507-2514.
http://dx.doi.org/10.1016/j.jenvman.2009.01.009
 
[23]Smith, E.H. (1998) Surface Complexation Modeling of Metal Removal by Recycled Iron Sorbent. Journal of Environmental Engineering, 124, 913-920.
http://dx.doi.org/10.1061/(ASCE)0733-9372(1998)124:10(913)
 
[24]Trgo, M. and Peric, J. (2003) Interaction of the Zeolitic Tuff with Zn-Containing Simulated Pollutant Solutions. Journal of Colloid and Interface Science, 260, 166-175.
http://dx.doi.org/10.1016/S0021-9797(03)00042-0
 
[25]Heidari, A., Younesi, H., Mehrabanb, Z. and Heikkinen, H. (2013) Selective Adsorption of Pb(II), Cd(II), and Ni(II) Ions from Aqueous Solution Using Chitosan-MAA Nanoparticles. International Journal of Biological Macromolecules, 61, 251-263.
http://dx.doi.org/10.1016/j.ijbiomac.2013.06.032
 
[26]Munthali, M.W., Kabwadza-Corner, P., Johan, E. and Matsue, N. (2014) Decrease in Cation Exchange Capacity of Zeolites at Neutral pH: Examples and Proposals of a Determination Method. Journal of Materials Science and Chemical Engineering, 2, 1-5.
http://dx.doi.org/10.4236/msce.2014.28001                                                                             eww150116lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...