跳至主要内容

Numerical Investigation of Wind Flow around a Cylindrical Trough Solar Collector

Read  full  paper  at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53017#.VLR7J8nQrzE

ABSTRACT
The goal of this study is to model the effects of wind on Cylindrical Trough Collectors (CTCs). Two major areas are discussed in this paper: 1) heat losses due to wind flow over receiver pipe and 2) average forces applied on the collector’s body. To accomplish these goals a 2D modeling of CTC was carried out using commercial codes with various wind velocities and collector orientations. Ambient temperature was assumed to be constant at 300 K and for specific geometries different meshing methods and boundary conditions were used in various runs. Validation was done by comparing the simulation results for a horizontal collector with empirical data. It was observed that maximum force of 509.1 Newton per Meter occurs at +60 degrees. Nusselt number is almost the constant for positive angles while at negative angles it varies considerably with the collector’s orientation.
 
Cite this paper
Shojaee, S. , Moradian, M. and Mashhoodi, M. (2015) Numerical Investigation of Wind Flow around a Cylindrical Trough Solar Collector. Journal of Power and Energy Engineering, 3, 1-10. doi: 10.4236/jpee.2015.31001.
 
References
[1]Mostofi, M., Nosrat, A.H. and Pearce, J.M. (2011) Institutional Scale Operational Symbiosis of Photovoltaic and Cogeneration Systems. International Journal of Environmental Science and Technology, 8, 31-44.
http://dx.doi.org/10.1007/BF03326193
 
[2]Goswami, D.Y., Kreith, F. and Kreider, J.F. (1999) Principles of Solar Engineering. 2nd Edition, Taylors & Francis Co., Philadelphia.
 
[3]Delyannis, A. (1967) Solar Stills Provide Island Inhabitants with Water. Sun at Work, 10, 6-8.
 
[4]Meinel, A.B. and Meinel, M.P. (1976) Applied Solar Energy. An Introduction. Addison-Wesley Pub. Co., Michigan.
 
[5]Kalogirou, S. (2004) Solar Thermal Collectors and Applications. Progress in Energy and Combustion Science, 30, 231295.
http://dx.doi.org/10.1016/j.pecs.2004.02.001
 
[6]Stine, W.B. (1987) Power from the Sun: Principles of High Temperature Solar Thermal Technology. Solar Energy Research Institute, Colorado.
 
[7]Mekhilef, S., Saidur, R. and Safari, A. (2011) A Review on Solar Energy Use in Industries. Renewable and Sustainable Energy Reviews, 15, 1777-1790.
http://dx.doi.org/10.1016/j.rser.2010.12.018
 
[8]Kalogirou, S. (2009) Solar Energy Engineering: Processes and Systems. Elsevier Inc., London.
 
[9]Chung, K.M., Chang, K.C. and Chou, C.C. (2011) Wind Loads on Residential and Large-Scale Solar Collector Models. Journal of Wind Engineering and Industrial Aerodynamics, 99, 59-64. http://dx.doi.org/10.1016/j.jweia.2010.10.008
 
[10]Kumar, S. and Mullick, S.C. (2010) Wind Heat Transfer Coefficient in Solar Collectors in Outdoor Conditions. Solar Energy, 84, 956-963.
http://dx.doi.org/10.1016/j.solener.2010.03.003
 
[11]Stojanovic, B., Hallberg, D. and Akander, J. (2010) A Steady State Thermal Duct Model Derived by Fin-Theory Approach and Applied on an Unglazed Solar Collector. Solar Energy, 84, 1838-1851.
http://dx.doi.org/10.1016/j.solener.2010.06.016
 
[12]Turgut, O. and Onur, N. (2009) Three Dimensional Numerical and Experimental Study of Forced Convection Heat Transfer on Solar Collector Surface. International Communications in Heat and Mass Transfer, 36, 274-279.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.10.017
 
[13]Cheng, Z.D., He, Y.L., Xiao, J., Tao, Y.B. and Xu, R.J. (2010) Three-Dimensional Numerical Study of Heat Transfer Characteristics in the Receiver Tube of Parabolic Trough Solar Collector. International Communications in Heat and Mass Transfer, 37, 782-787.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.05.002
 
[14]Naeeni, N. and Yaghoubi, M. (2006) Analysis of Wind Flow around a Parabolic Collector (1) Fluid Flow. Renewable Energy, 32, 1898-1916.
http://dx.doi.org/10.1016/j.renene.2006.10.004
 
[15]Naeeni, N. and Yaghoubi, M. (2006) Analysis of Wind Flow around a Parabolic Collector (2) Heat Transfer from Receiver Tube. Renewable Energy, 32, 1259-1272.
http://dx.doi.org/10.1016/j.renene.2006.06.005
 
[16]Yakhot, V. and Orszag, S.A. (1986) Renormalized Group Analysis of Turbulence: I. Basic Theory. Journal of Scientific Computing, 1, 3-51.
http://dx.doi.org/10.1007/BF01061452
 
[17]Cengel, Y.A. (2002) Heat Transfer: A Practical Approach. 2nd Edition, McGraw-Hill, New York.
 
[18]Scott, J. (2005) Drag of Cylinders & Cones.
http://www.aerospaceweb.org/question/aerodynamics/q0231.shtml                                eww150113lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...