跳至主要内容

Modeling and Simulation of Mechanical Properties of Nano Particle Modified Polyamide 6

Read  full  paper  at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53368#.VMBjDyzQrzE

Author(s)   
  1. Yi, J. Wiedmaier, S. Schmauder

Affiliation(s)
Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, D-70569 Stuttgart, Germany.

ABSTRACT
This paper discusses the utilization of nano-sized fillers in Polyamide 6 to increase the fracture resistance of the composites, which are crucial for various engineering applications. The toughening of the composites is achieved by using dispersed nano-scaled rubber particles (Polyether block copolymer) as the inclusion in Polyamide 6 matrix. For a better understanding of the mechanical behavior of the composites, it is indispensable to use analytical and numerical models for evaluating the overall mechanical behavior and damage mechanism of the composite. In this work the toughening mechanism is studied through literature review and by analytical modeling. The mechanical behavior of the composites such as elastic plastic and damage properties are calculated numerically with 3D representative volume element (RVE) models. The numerical results are compared with previously obtained experiments. The influence of volume fraction and aspect ratio of inclusions on the macroscopic stress strain curve as well as the size effect of inclusions and also the failure properties of the composite are studied in detail.

KEYWORDS
PA 6 Nanocomposite, Dispersed Rubber Particles, Toughening Mechanism, FEM Modeling, Mechanical Property

Cite this paper
Yi, I. , Wiedmaier, J. and Schmauder, S. (2015) Modeling and Simulation of Mechanical Properties of Nano Particle Modified Polyamide 6. Journal of Materials Science and Chemical Engineering, 3, 80-87. doi: 10.4236/msce.2015.31012.

References
[1]Vaidya, U. (2011) Composites for Automotive, Truck and Mass Transit: Materials, Design, Manufacturing. Chapter 2 Polymer Resins, Additives and Sandwich Cores for Automotive, Mass Transit and Heavy Trucks. DEStech Publications, Inc., Lancaster.
 
[2]Geier, S., Poindl, M. and Eyerer, P. (2010) Toughening of PA 6 by Fine Dispersed Nanosized PA 6-Polyether Block Copolymer Particles. Proceeding of the Polymer Processing Society, 26th Annual Meeting.
 
[3]Geier, S. (2011) Optimierung von Steifigkeit/Z?higkeits-Eigenschaften Nanoskaliger Polyamid 6-Verbund-Werkstoffe Durch Analyse von Struktur/Eigenschafts-Korrelationen Stuttgart, Univ., Diss.
 
[4]Bucknall, C.B. (1977) Toughened Plastics. Chapter 7 Mechanisms of Rubber Toughening. Applied Science Publ., Lon-don.
 
[5]Merz, E.H., Claver, G.C. and Baer, M. (1956) Studies on Heterogeneous Polymeric Systems. Journal of Polymer Science, 22, 325-341. http://dx.doi.org/10.1002/pol.1956.1202210114
 
[6]Bucknall, C.B. and Smith, R.R. (1965) Stress-Whitening in High-Impact Polystyrenes. Polymer, 6, 437-446. http://dx.doi.org/10.1016/0032-3861(65)90028-5
 
[7]Newman, S. and Strella, S. (1965) Stress-Strain Behavior of Rubber-Reinforced Glassy Polymers. Journal of Applied Polymer Science, 9, 2297-2310. http://dx.doi.org/10.1002/app.1965.070090621
 
[8]Lazzeri, A. and Bucknall, C.B. (1993) Dilatational Bands in Rubber-Toughened Polymers. Journal of Materials Science, 28, 6799-6808. http://dx.doi.org/10.1007/BF00356433
 
[9]Fond, C. and Schirrer, R. (1996) A Mechanical Model for the Onset of Damage in Rubber Modified Amorphous Polymers. Journal de Physique IV, 6, C6-375-C6-384.
 
[10]Grundke, K., Michel, S., Knispel, G. and Grundler, A. (2008) Wettability of Silicone and Polyether Impression Materials: Characterization by Surface Tension and Contact Angle Measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 598-609.
 
[11]Uhrig, M. (2014) Numerische Simulation der mechanischen Eigenschaften nanopartikel gefüllter Polyamid 6-Composites via RVE Modellierung Stuttgart, Univ., Studienarbeit.
 
[12]Huang, J., Schmauder, S., Weber, U. and Geier, S. (2011) Micromechanical Modelling of the Elastoplastic Behaviour of Nano-dispersed Elastomer Particle-Modified PA 6. Computational Materials Science, 52, 107-111.
 
[13]Gitman, I.M. (2006) Representative Volumes and Multi-Scale Modelling of Quasi-Brittle Materials. Delft, Univ., Diss.
 
[14]Abaqus 6.12: Analysis User’s Manual, Volume II: Analysis Dassault Systèmes, 2013.
 
[15]Abaqus 6.12: Abaqus/CAE User’s Manual Dassault Systèmes, 2013.
 
[16]Belytschko, T. and Black, T. (1999) Elastic Crack Growth in Finite Elements with Minimal Remeshing. International Journal for Numerical Methods in Engineering, 45, 601-620. http://dx.doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
 
[17]Daux, C., Mo?s, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000) Arbitrary Branched and Intersecting Cracks with the Extended Finite Element Method. International Journal for Numerical Methods in Engineering, 48, 1741- 1760, http://dx.doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
 
[18]Karihaloo, B.L. and Xiao, Q.Z. (2003) Modelling of Stationary and Growing Cracks in FE Framework without Remeshing: A State-of-the-Art Review. Computers & Structures, 81, 119-129. http://dx.doi.org/10.1016/S0045-7949(02)00431-5                                                                                eww150122lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...