Mathematical Modeling and Experimental Validation of Mixed Metal Oxide Thin Film Deposition by Spray Pyrolysis
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53136#.VLXWacnQrzE
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53136#.VLXWacnQrzE
Affiliation(s)
1Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA.
2Semenov Institute of Chemical Physics, Russian Academia of Sciences, Moscow, Russia.
2Semenov Institute of Chemical Physics, Russian Academia of Sciences, Moscow, Russia.
ABSTRACT
The
deposition of metal oxide films using Spray Pyrolysis Technique (SPT)
is investigated through mathematical and physical modeling. A
comprehensive model is developed in the processes including atomization,
spray, evaporation, chemical reaction and deposition. The predicted
results including particle size and film thickness are compared with the
experimental data obtained in a complementary study. The predicted film
thickness is in a good agreement with the measurements when the
temperature is high enough for the chemical reaction to proceed. The
model also adequately predicts the size distribution when the
nanocrystals are well-structured at controlled temperature and
concentration.
Cite this paper
References
Khatami,
S. , Ilegbusi, O. and Trakhtenberg, L. (2015) Mathematical Modeling and
Experimental Validation of Mixed Metal Oxide Thin Film Deposition by
Spray Pyrolysis. Materials Sciences and Applications, 6, 68-77. doi: 10.4236/msa.2015.61009.
[1] | Sivalingam,
D., Gopalakrishnan, J.B. and Rayappan, J.B.B. (2012) Nanostructured
Mixed ZnO and CdO Thin Film for Selective Ethanol Sensing. Materials
Letters, 77, 117-120. http://dx.doi.org/10.1016/j.matlet.2012.03.009 |
[2] | Ilican,
S., Caglar, Y., Caglar, M. and Yakuphanoglu, F. (2006) Electrical
Conductivity, Optical and Structural Properties of Indium-Doped ZnO
Nanofiber Thin Film Deposited by Spray Pyrolysis Method. Physica E:
Low-Dimensional Systems and Nanostructures, 35, 131-138. http://dx.doi.org/10.1016/j.physe.2006.07.009 |
[3] | Kalantar-Zadeh, K. and Fry, B. (2007) Nanotechnology-Enabled Sensors. Springer, New York. |
[4] | Kumar, P. (2013) Magnetism and Magnetotransport in Half and over Doped Manganites Impact of Substrate Induced Strain and Polycrystalline Disorder. Ph.D. Thesis, Jaypee Institute of Information Technology, Noida. |
[5] | Perednis, D. and Gauckler, L.J. (2005) Thin Film Deposition Using Spray Pyrolysis. Journal of Electroceramics, 14, 103-111. http://dx.doi.org/10.1007/s10832-005-0870-x |
[6] | Nakaruk,
A.S.C.C. and Sorrell, C.C. (2010) Conceptual Model for Spray Pyrolysis
Mechanism: Fabrication and Annealing of Titania Thin Films. Journal of
Coatings Technology and Research, 7, 665-676. http://dx.doi.org/10.1007/s11998-010-9245-6 |
[7] | Jayanthi,
G.V., Zhang, S.C. and Messing, G.L. (1993) Modeling of Solid Particle
Formation during Solution Aerosol Thermolysis: The Evaporation Stage.
Aerosol Science and Technology, 19, 478-490. http://dx.doi.org/10.1080/02786829308959653 |
[8] | Yu,
H.F. and Liao, W.H. (1998) Evaporation of Solution Droplets in Spray
Pyrolysis. International Journal of Heat and Mass Transfer, 41,
993-1001. http://dx.doi.org/10.1016/S0017-9310(97)00226-3 |
[9] | Eslamian,
M., Ahmed, M. and Ashgriz, N. (2006) Modelling of Nanoparticle
Formation during Spray Pyrolysis. Nanotechnology, 17, 1674. http://dx.doi.org/10.1088/0957-4484/17/6/023 |
[10] | Reuge,
N. and Caussat, B. (2007) A Dimensionless Study of the Evaporation and
Drying Stages in Spray Pyrolysis. Computers & Chemical Engineering,
31, 1088-1099. http://dx.doi.org/10.1016/j.compchemeng.2006.09.011 |
[11] | Huang,
L., Kumar, K. and Mujumdar, A.S. (2004) Simulation of a Spray Dryer
Fitted with a Rotary Disk Atomizer Using a Three-Dimensional
Computational Fluid Dynamic Model. Drying Technology, 22, 1489-1515. http://dx.doi.org/10.1081/DRT-120038737 |
[12] | Jiang,
X., Ward, T.L., Swol, F.V. and Brinker, C.J. (2010) Numerical
Simulation of Ethanol-Water-NaCl Droplet Evaporation. Industrial &
Engineering Chemistry Research, 49, 5631-5643. http://dx.doi.org/10.1021/ie902042z |
[13] | Khatami,
S.M.N., Ilegbusi, O.J. and Trakhtenberg, L. (2013) Modeling of Aerosol
Spray Characteristics for Synthesis of Sensor Thin Film from Solution.
Applied Mathematical Modeling, 37, 6389-6399. http://dx.doi.org/10.1016/j.apm.2013.01.009 |
[14] | Khatami, S.M.N. and Ilegbusi, O.J. (2012) Droplet Evaporation and Chemical Reaction in a Single Multi-Component Droplet to Synthesis Mixed-Oxide Film Using Spray Pyrolysis Method. Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, 9-15 November 2012, 633-638. |
[15] | Widiyastuti,
W., Wang, W.N., Lenggoro, I.W., Iskandar, F. and Okuyama, K. (2007)
Simulation and Experimental Study of Spray Pyrolysis of Polydispersed
Droplets. Journal of Materials Research, 22, 1888-1898. http://dx.doi.org/10.1557/jmr.2007.0235 |
[16] | Filipovic, L., Selberherr, S., Mutinati, G.C., Brunet, E., Steinhauer, S., Köck, A. and Schrank, F. (2013) Modeling Spray Pyrolysis Deposition. Proceedings of the World Congress on Engineering, 2, 987-992. |
[17] | Blaker, K.A., Halani, A.T., Vijayakumar, P.S., Wieting, R.D. and Wong, B. (1988) Chemical Vapor Deposition of Zinc Oxide Films and Products. US Patent No. 4751149. |
[18] | Barnes,
T.M., Leaf, J., Fry, C. and Wolden, C.A. (2005) Room Temperature
Chemical Vapor Deposition of c-Axis ZnO. Journal of Crystal Growth, 274,
412-417. http://dx.doi.org/10.1016/j.jcrysgro.2004.10.015 |
[19] | Khatami, S.M.N., Kuruppumullage, D.N. and Ilegbusi, O.J. (2013) Characterization of Metal Oxide Sensor Thin Films Deposited by Spray Pyrolysis. Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, 15-21 November, Article ID: V010T11A044. |
[20] | Khatami, S.M.N. and Ilegbusi, O.J. 2011) Modeling of Aerosol Spray Characteristics for Synthesis of Mixed-Oxide Nanocomposite Sensor Film. Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, 11-17 November 2011, 581-589. |
[21] | Shinde, P.S. (2012) Photoelectrochemical Detoxification of Water Using Spray Deposited Oxide Semiconductor Thin Films. Ph.D. Thesis, Shivaji University, Kolhapur. |
[22] | Kowarik, S., Hinderhofer, A., Gerlach, A. and Schreiber, F. (2011) Modeling Thin Film Deposition Processes Based on Real-Time Observation. In: Cao, Z., Ed., Thin Film Growth, Woodhead Publishing, Oxford, Cambridge. |
[23] | Gupta, S.P. (1985) Measures of Dispersion, Statistical Methods. Sultan Chand and Sons, New Delhi. |
[24] | Ayouchi,
R., Martin, F., Leinen, D. and Ramos-Barrado, J.R. (2003) Growth of
Pure ZnO Thin Films Prepared by Chemical Spray Pyrolysis on Silicon.
Journal of Crystal Growth, 247, 497-504. http://dx.doi.org/10.1016/S0022-0248(02)01917-6 |
[25] | Hu,
J. and Gordon, R.G. (1992) Atmospheric Pressure Chemical Vapor
Deposition of Gallium Doped Zinc Oxide Thin Films from Diethyl Zinc,
Water, and Triethyl Gallium. Journal of Applied Physics, 72, 5381-5392. http://dx.doi.org/10.1063/1.351977 |
[26] | Hu,
J. and Gordon, R.G. (1992b) Textured Aluminum-Doped Zinc Oxide Thin
Films from Atmospheric Pressure Chemical-Vapor Deposition. Journal of
Applied Physics, 71, 880-890. http://dx.doi.org/10.1063/1.351309 |
[27] | Zunke,
I., Heft, A., Schäfer, P., Haidu, F., Lehmann, D., Grünler, B. and
Zahn, D.R.T. (2013) Conductive Zinc Oxide Thin Film Coatings by
Combustion Chemical Vapour Deposition at Atmospheric Pressure. Thin
Solid Films, 532, 50-55. http://dx.doi.org/10.1016/j.tsf.2012.11.151 |
[28] | Liang,
Z., Gao, R., Lan, J.L., Wiranwetchayan, O., Zhang, Q., Li, C. and Cao,
G. (2013) Growth of Vertically Aligned ZnO Nanowalls for Inverted
Polymer Solar Cells. Solar Energy Materials and Solar Cells, 117, 34-40.
http://dx.doi.org/10.1016/j.solmat.2013.05.019 |
[29] | Tucic,
A., Marinkovic, Z.V., Mancic, L., Cilense, M. and Milosevic, O. (2003)
Pyrosol Preparation and Structural Characterization of SnO2 Thin Films.
Journal of Materials Processing Technology, 143, 41-45. http://dx.doi.org/10.1016/S0924-0136(03)00316-9 |
[30] | Jiao,
B.C., Zhang, X.D., Wei, C.C., Sun, J., Huang, Q. and Zhao, Y. (2011)
Effect of Acetic Acid on ZnO: In Transparent Conductive Oxide Prepared
by Ultrasonic Spray Pyrolysis. Thin Solid Films, 520, 1323-1329. http://dx.doi.org/10.1016/j.tsf.2011.04.152 |
[31] | Miki-Yoshida,
M., Paraguay-Delgado, F., Estrada-Lopez, W. and Andrade, E. (2000)
Structure and Morphology of High Quality Indium-Doped ZnO Films Obtained
by Spray Pyrolysis. Thin Solid Films, 376, 99-109. http://dx.doi.org/10.1016/S0040-6090(00)01408-5 |
[32] | Lee,
J.H., Lee, S.Y. and Park, B.O. (2006) Fabrication and Characteristics
of Transparent Conducting In2O3-ZnO Thin Films by Ultrasonic Spray
Pyrolysis. Materials Science and Engineering: B, 127, 267-271. http://dx.doi.org/10.1016/j.mseb.2005.10.008 |
[33] | Badadhe,
S.S. and Mulla, I.S. (2009) H2S Gas Sensitive Indium-Doped ZnO Thin
Films: Preparation and Characterization. Sensors and Actuators B:
Chemical, 143, 164-170. http://dx.doi.org/10.1016/j.snb.2009.08.056 eww150114lx |
评论
发表评论