跳至主要内容

Gene Regulation of Catecholamine Biosynthetic Enzymes by Nitric Oxide in PC12 Cells

Read  full  paper  at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=45290#.VL30GCzQrzE

Author(s)  
Dominique Ansell, Julie Grandbois, T. C. Tai

Affiliation(s)
Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Canada.
Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Canada.
Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Canada.

ABSTRACT
Nitric oxide (NO) regulates a wide range of physiological processes. Recent studies show that NO can regulate the release of catecholamines (CA) from the adrenal medulla. In the current study, the PC12 cell line was used to examine the effect of NO on the regulation of the CA biosynthetic enzymes: tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine Nmethyltransferase (PNMT). Treatment of PC12 cells with the NO donor, sodium nitroprusside (SNP) for 6 hours significantly increased TH, DBH and PNMT mRNA levels. In addition, NO potentiates the regulation of gene expression of all three CA biosynthetic enzymes by glucocorticoids and cholinergic agonists. The signaling pathways involved in NO regulation of CA biosynthetic enzymes were investigated with the use of specific kinase activators and inhibitors, with results supporting a contributing role of PKA, PKC and PKG in SNP-mediated induction for all three CA genes (p < 0.01). In addition, inhibitors of transcription and translation inhibited SNP-mediated induction of all three genes (p < 0.001) suggesting that both transcriptional and translational mechanisms may be involved in CA gene regulation by NO. Results from this study show that in addition to regulating CA biosynthetic enzymes, NO can also potentiate cholinergic and glucocorticoid activation of CA genes.

KEYWORDS
NO, PC12 Cells, TH, DBH, PNMT, Catecholamines

Cite this paper
Ansell, D. , Grandbois, J. and Tai, T. (2014) Gene Regulation of Catecholamine Biosynthetic Enzymes by Nitric Oxide in PC12 Cells. Open Journal of Endocrine and Metabolic Diseases, 4, 77-84. doi: 10.4236/ojemd.2014.44009.

References
[1]Lai, F.J., Huang, S.S., Hsieh, M.C., Hsin, S.C., Wu, C.H., Hsin, Y.C., et al. (2005) Upregulation of Neuronal Nitric Oxide Synthase mRNA and Protein in Adrenal Medulla of Water-Deprived Rats. The Journal of Histochemistry and Cytochemistry, 53, 45-53.
http://dx.doi.org/10.1369/jhc.4A6350.2005
 
[2]Oset-Gasque, M.J., Parramon, M., Hortelano, S., Bosca, L., and Gonzalez, M. P. (1994) Nitric Oxide Implication in the Control of Neurosecretion by Chromaffin Cells. Journal of Neurochemistry, 63, 1693-1700.
http://dx.doi.org/10.1046/j.1471-4159.1994.63051693.x
 
[3]Oset-Gasque, M.J., Vicente, S., Gonzalez, M.P., Rosario, L.M. and Castro, E. (1998) Segregation of Nitric Oxide Synthase Expression and Calcium Response to Nitric Oxide in Adrenergic and Noradrenergic Bovine Chromaffin Cells. Neuroscience, 83, 271-280.
http://dx.doi.org/10.1016/S0306-4522(97)00377-1
 
[4]Chen, M.J. and Russo-Neustadt, A.A. (2007) Nitric Oxide Signaling Participates in Norepinephrine-Induced Activity of Neuronal Intracellular Survival Pathways. Life Sciences, 81, 1280-1290.
http://dx.doi.org/10.1016/j.lfs.2007.09.003
 
[5]Najimi, M., Robert, J.J., Mallet, J., Rostene, W. and Forgez, P. (2002) Neurotensin Induces Tyrosine Hydroxylase Gene Activation through Nitric Oxide and Protein Kinase C Signaling Pathways. Molecular Pharmacology, 62, 647-653.
http://dx.doi.org/10.1124/mol.62.3.647
 
[6]Unsworth, B.R., Hayman, G.T., Carroll, A. and Lelkes, P.I. (1999) Tissue-Specific Alternative mRNA Splicing of Phenylethanolamine N-Methyltransferase (PNMT) during Development by Intron Retention. International Journal of Developmental Neuroscience, 17, 45-55.
http://dx.doi.org/10.1016/S0736-5748(98)00058-6
 
[7]Kumai, T., Tanaka, M., Tateishi, T., Asoh, M. and Kobayashi, S. (1998) Effects of Sodium Nitroprusside on the Catecholamine Synthetic Pathway in the Adrenal Medulla of Rats. Japanese Journal of Pharmacology, 77, 20-210.
http://dx.doi.org/10.1254/jjp.77.205
 
[8]Tai, T.C. and Wong, D.L. (2003) Protein Kinase A and Protein Kinase C Signaling Pathway Interaction in Phenylethanolamine N-Methyltransferase Gene Regulation. Journal of Neurochemistry, 85, 816-829.
http://dx.doi.org/10.1046/j.1471-4159.2003.01728.x
 
[9]Wong, D.L., Anderson, L.J. and Tai, T.C. (2002) Cholinergic and Peptidergic Regulation of Phenylethanolamine N-Methyltransferase Gene Expression. Annals of the New York Academy of Sciences, 971, 19-26.
http://dx.doi.org/10.1111/j.1749-6632.2002.tb04428.x
 
[10]Serova, L.I., Nankova, B., Kvetnansky, R. and Sabban, E. L. (1997) Immobilization Stress Elevates GTP Cyclohydrolase I mRNA Levels in Rat Adrenals Predominantly by Hormonally Mediated Mechanisms. Stress (Amsterdam, Netherlands), 1, 135-144.
http://dx.doi.org/10.3109/10253899709001103
 
[11]Wong, D.L. (2006) Epinephrine Biosynthesis: Hormonal and Neural Control during Stress. Cellular and Molecular Neurobiology, 26, 891-900.
http://dx.doi.org/10.1007/s10571-006-9056-6
 
[12]O’Sullivan, A.J. and Burgoyne, R.D. (1990) Cyclic GMP Regulates Nicotine-Induced Secretion from Cultured Bovine Adrenal Chromaffin Cells: Effects of 8-Bromo-Cyclic GMP, Atrial Natriuretic Peptide, and Nitroprusside (Nitric Oxide). Journal of Neurochemistry, 54, 1805-1808.
http://dx.doi.org/10.1111/j.1471-4159.1990.tb01238.x
 
[13]Wong, D.L., Tai, T.C., Wong-Faull, D.C., Claycomb, R. and Kvetnansky, R. (2004) Genetic Mechanisms for Adrenergic Control during Stress. Annals of the New York Academy of Sciences, 1018, 387-397.
http://dx.doi.org/10.1196/annals.1296.048
 
[14]Serova, L., Nankova, B., Rivkin, M., Kvetnansky, R. and Sabban, E.L. (1997) Glucocorticoids Elevate GTP Cyclohydrolase I mRNA Levels in Vivo and in PC12 Cells. Brain Research. Molecular Brain Research, 48, 251-258.
 
[15]Roskoski Jr., R. and Roskoski, L.M. (1987) Activation of Tyrosine Hydroxylase in PC12 Cells by the Cyclic GMP and Cyclic AMP Second Messenger Systems. Journal of Neurochemistry, 48, 236-242.
 
[16]Rodriguez-Pascual, F., Miras-Portugal, M.T. and Torres, M. (1996) Effect of Cyclic GMP-Increasing Agents Nitric Oxide and C-type Natriuretic Peptide on Bovine Chromaffin Cell Function: Inhibitory Role Mediated by Cyclic GMP-Dependent Protein Kinase. Molecular Pharmacology, 49, 1058-1070.                    eww150120lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...